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1. Introduction
The Ready-Made Garment (RMG) sector contributes as the backbone of the Bangladesh economy; it accounts for more than 80% of the country's export earnings and employs around 4 million workers [1]. However, the rapid development of industrialization in these sectors has led to substantial environmental problems, including excessive water consumption, chemical pollution, and carbon emissions, which pose a significant threat to ecological sustainability [2]. 

With growing pressures from across the world regarding eco-friendly practices, the introduction of modern technologies, such as artificial intelligence in supply chain management, seems a strategic fillip to bring productivity in line with ecological pace [3].
AI-SCI's implementation complements predictive analysis, real-time information sharing, as well as automation to achieve efficient resource use, reduced wastage, along increased operational visibility [4]. To date, the literature has emphasized the potential impact of AI for enhancing sustainability in the manufacturing sector, but there is scarce empirical evidence of the role of AI-SCI toward improving environmental sustainability in emerging markets such as Bangladesh, where the adoption of technologies is influenced by infrastructural and institutional constraints [5]. Also, the mediating mechanisms by which AI-SCI leads to sustainable practices are relatively neglected. Technology readiness – an organisation’s readiness to adapt and assimilate new technology and supply chain agility, the ability to respond rapidly to market and operational disruptions, are suggested as two important enablers in this relationship [6].
The research explores direct and mediating mechanisms by which AI-SCI promotes environmental sustainability in the RMG of Bangladesh. Based on resource-based view (RBV) and dynamic capability theories, we argue that AI-SCI not only directly contributes to sustainability, but also indirectly by improving technological readiness and supply chain agility.
 Namely, we propose that technological readiness mediates the AI-SCI-sustainability relationship, by endowing firms with the capabilities to adopt eco-efficient practices, and supply chain agility allows for fast re-adjustment to sustainable practices in turbulent market environments. By analysing such relationships, this study contributes to the literature by addressing an important lacuna on how AI innovations can be translated into practice for meeting the dual needs of industrial growth and ecological conservation in resource-scarce settings.
Despite the increasing importance of AI-based supply chain integration (AI-SCI) and its potential benefits for environmental sustainability (ES), empirical evidence remains limited, particularly in developing countries such as Bangladesh. Current research mainly addresses developed markets, ignoring the infrastructural and institutional limitations of developing countries [7]. 

In addition, it is hypothesized that TR and SCA are mediators; however, there is still a lack of research that illustrates the specific mediating mechanisms for AI-SCI and ES concerning the RMG sector [8]. The present study overcomes these limitations by (1) focusing on the direct effects of AI-SCI on ES in the RMG industry of Bangladesh and (2) empirically testing the mediating effects of TR and SCA and hence provides context-specific. 

2. Literature Review
[bookmark: _Hlk204505149]2.1 Overview of the RMG Sector in Bangladesh
Bangladesh’s economy largely depends on the garment sector, which has the second-highest earnings from exports and employment. The RMG industry was responsible for about 83.49% of Bangladesh's overall exports worth $36.66 billion in the FY 2021-2022 and earning livelihood for around 4.4 million workers, most of them women [9]. 

This industry has been instrumental in reviving the least developed Bangladesh and catapulting it to a middle-income one, highlighting its economic importance [9]. But the enormous expansion of the RMG industry has also not been without problems, especially regarding environmental issues.

The environmental challenges in the RMG industry are huge. The textile industry is well known as a water consumption-intensive industry, with the use of approximately 1,500 billion liters/year of water for dyeing and washing purposes; 42% of this amount is used by weaving and fabric preparation sections [10]. Furthermore, a lot of the factories do not have good environmental management, with the consequence that pollution and resource depletion are made [11]. 

These problems are intensified due to a shortage of knowledge and a lack of resources for the implementation of appropriate plans for environmental management, as many industries still do not pay heed to their role in environmental protection [11]. 

Additionally, the fact that the industry operates primarily in non-industrial areas of the country has led to a lack of adherence to safety and environmental regulations, and therefore to a higher environmental footprint [12].

In the context of the RMG industry, environmental sustainability at work includes environmentally sound practices that reduce ecological pollution without compromising economic performance. Some performance measures that need to be tracked in such a sector are water use efficiency, waste utilization from the production process, and implementation of green manufacturing technology [13].

 Sustainable practices need to be incorporated not only for the sake of abiding by the international rules and regulations, but also for improving the global competitive position of the sector [13]. Adoption of IMS. The implementation of IMS has been advocated as a way of reducing the environmental impact of businesses by increasing transparency and resource efficiency [14].

In summary, the RMG industry is a vital component of Bangladesh's economy, but it faces significant environmental challenges that necessitate a shift towards more sustainable practices. The implementation of AI in supply chain management offers a promising approach to addressing these challenges, enabling the industry to enhance its sustainability performance while maintaining its economic significance.
2.2 AI-Driven Supply Chain Integration
AI-enabled supply chain integration is defined as the integration of artificial intelligence (AI) technologies that enable efficient, resilient, and sustainable supply chain operations. Some of these key components have now been systematically reviewed, including  predictive analysis, real-time data segmentation, and intelligent decision-making [15]. 

These features will facilitate better demand forecasting, inventory management, and logistics, supporting a more agile and innovative supply chain (Krishnan, 2024). In addition, AI methods, including machine learning and natural language processing, are being increasingly used to refine various supply chain tasks, thereby replacing traditional working models with more data-driven ones [16].
AIM and SCM have immense operational and environmental advantages. Research has shown that AI can enhance operational efficiency by automating mundane tasks and improving demand prediction accuracy, as well as optimizing resource allocation [17]. For example,  predictive maintenance driven by AI can minimize downtime (via the optimization of the use of assets), reducing costs and increasing service levels. 
From an environmental perspective, AI helps promote more sustainable practices -for instance, greener transportation, by finding more ecologically friendly logistics routes to reduce emissions, and more transparent supply chains, to ensure better compliance with environmental laws [18]. The application of AI in supply chains not only enables operational efficiencies but also promotes environmental sustainability.
The evidence on the positive nexus between direct evidence of AI adoption and environmental sustainability is strong. AI-based solutions enable organizations to go green by utilizing their resources more efficiently and reducing waste. For example, AI can process data to identify inefficiencies in energy consumption throughout the supply chain, leading to targeted interventions to reduce carbon footprints [19]. Furthermore, AI enables better tracking and handling of materials, resulting in more effective recycling and waste management (ibid).
H1: AI-Driven Supply Chain Integration has a positive direct impact on Environmental Sustainability in RMG.

The integration of AI has been found to have a significant impact on a firm's technological readiness, based primarily on empirical evidence from academic literature. The implementation of AI applications requires new and up-to-date digital infrastructure and competence, creating a climate where innovation can grow [20].

 Firms that successfully adopt AI in their supply chains typically tend to be more ready to adopt other new technologies, resulting in a positive and self-reinforcing cycle of technological adoption [21]. This preparation is crucial for companies seeking to maintain their edge in rapidly changing markets.

H2: Supply Chain Integration with AI has a direct positive influence on Technological Readiness.

It reached this conclusion, even though it has demonstrated that the integration of AI helps increase supply chain agility by making decisions quicker and more effectively. The ability to manage large volumes of information in real-time enables organizations to respond promptly to market shifts and disturbances [21]. 

It has been reported that the application of AI in supply chain management enables companies to predict demand variations and plan, accordingly, thereby enhancing flexibility and speed [22]. In the 22nd century, as most supply chain operations contend with various business threats, ranging from geopolitical tensions to global pandemics (Chukwu,  2024), this nimbleness is crucial.

H3: AI-driven supply chain integration has a significant, positive direct effect on Supply Chain Agility.

To sum up, ACV ACV-driven supply chain integration is composed of different elements to facilitate operational efficiency and environmental sustainability. The empirical results provide support for the proposed hypotheses, which suggest that AI integration has a positive impact on environmental sustainability and technological readiness, as well as a significantly positive effect on supply chain agility.


2.3 Technological Readiness
Technological readiness is an important concept within the context of digital transformation and SCM. An organization can accept and utilize new technology adequately and efficiently, which handling change leads to digital sonority. Singh and Patel (2023) emphasize that technological readiness is not limited to technology availability, but also includes an organizational culture, skills, and mindset required for effective usage. Such preparedness is of particular importance in SCM because the application of digital technologies can bring about increased efficiency, flexibility, and competitiveness [23].
It has been empirically evidenced that technological preparedness is significantly correlated with successful technology use in the context of SCM. According to Khan and Rahman (2023), firms with high technological readiness are significantly more likely to embrace advanced technologies such as AI and big data analytics, and this may help them improve the efficiency of supply chain operations.
 According to their findings, organizations that persist in cultivating their technological capabilities enjoy significant gains in operational performance and customer satisfaction [22]. Moreover, the technological readiness has a strong relationship with the proactive change management that can make the transitions within the technology adoption process for new system implementation in organizations easier [24].
On the direct effect of technological readiness towards environmental sustainability, the literature corroborates that businesses with greater technological readiness have greater potential to adopt sustainable actions. Technological preparedness allows companies to embrace green technologies and applications  and to reduce their pollution. 
For example, Azieva (2021) claims that firms that are prepared to adopt digital transformation may use technology to improve sustainability using these tools, such as, for example, by maximising the usage of resources, as well as by minimising waste [26]. This partnership emphasizes the organizational need for a readiness culture in order to achieve operational excellence as well as sustainability goals.
H4: Technological Readiness has a positive direct effect on Environmental Sustainability in the RMG sector.
Regarding the mediating role of technological readiness in the relationship of AI-driven integration with environmental performance,  the research finds that technological readiness plays a pivotal role. When AI is used in organizations, ones with higher technological readiness are more like to have a positive environmental impact than those who are not.
 That’s because they can make the most of AI solutions to streamline work, increase resource utilization, and encourage long-term sustainability. For instance, research suggests that technologically mature companies can employ AI in predictive analytics to make better decisions in terms of resource management and waste [25]. Hence, technology readiness is also a facilitator of the acceptance of AI and encourages its environmental sustainability benefits.
H5: Technological Readiness mediates a positive relationship between AI-Driven Supply Chain Integration and Environmental Sustainability.
Thus, technology readiness is a complex construct that is critical in digital transformation and SCM. It has powerful implications on the successful adoption of technologies, is linked to environmental sustainability, and plays an intermediating role in the association between AI implementation and environmental performance. Enhancing technological readiness for digital mastery and sustainable operating practices should be a priority among these institutions.
2.4 Supply Chain Agility
Agility in supply chain function is the ability of an organization to respond rapidly to the changes in market and customers' demand, and factory-level flexibility, where the sensitive and unforeseen events of the organization [26]. Such agility is vital in turbulent markets in which consumer desires and environmental realities can change overnight, requiring the organization to react immediately, if it is to stay competitive [27]. Supply chain agility plays a critical role in performance indicators such as on-time delivery, quality, flexibility, and innovation [28].

 Under conditions of uncertainty, agile supply chains are in a better position to navigate risks and seize opportunities and thereby are more capable of generating sustained operating performance [29].

The literature shows that SC agility improves organizational operational performance and promotes green practices at organizations. Agility allows companies to respond more quickly to regulations and the consumer preference for environmentally friendly products. As an example, agile supply chains are able to rapidly transform sourcing and production structures to be able to include sustainable fabrics and practices, consequently satisfying those goals in relation to environmental sustainability [30]. 

Anticipating the market and responding proactively are the main drivers of green supply chain initiatives [31]. This flexibility is essential as companies try to satisfy profitability, and sustainability demands at the same time.

The direct influence of supply chain agility on environmental sustainability is also proven in research, which shows an association between agile practices and waste reduction as well as resource efficiency [32]. For instance, agile supply chains can accommodate lean practices to reduce the surplus inventory in the production system and to simplify the operations; as a result, carbon footprints and sustainability performance can also be improved [33]. Bovet (2005) indicates that agility enables a firm to innovate and continuously improve both processes and products, promoting a culture of continuous improvement, which is necessary for long-term survival [34].

H6: Supply Chain Agility has a positive direct effect on Environmental Sustainability in the RMG sector.
Furthermore, the literature also acknowledges the mediating effect of supply chain agility on the relationship between AI integration and environmental sustainability. Supply chain agility is improved using AI technologies to access up-to-the-second data analytics and predictive analytics that help firms make decisions in a snap [35]. 
Such AI-agility duality will not only enhance agility and responsiveness but also pave the way for the grass-roots cornerstones of sustainable practices becoming more aligned and reducing waste [36]. And incorporation of AI in agile supply chains supports proactive sustainability; operational centred sustainability, firms prepare and face environmental challenges and react to them effectively [37].
H7: Supply Chain Agility positively mediates the relationship between AI-Driven Supply Chain Integration and Environmental Sustainability.
In conclusion, supply chain agility is an integral aspect for firms doing business in dynamic markets,  because it allows organizations to act more quickly to changes in competitive landscapes and facilitates sustainable practices. The nexus of agility, AI, and environmental sustainability illustrates the strategic significance of agility in gaining a competitive advantage and ensuring the long-term success of organizations.
2.5 Environmental Sustainability in the RMG Sector
Traditional practices in the supply chain have created environmental challenges in the ready-made garment (RMG) industry, more significantly in developing economies such as Bangladesh. Rapidly pushing forward these practices results in over-generated waste, excessive usage of water, and chemical residue pollution, which could be harmful to local ecosystems and communities [38].

 states that the RMG sector greatly contributes to environmental pollution through the discharge of effluents generated through outdated production mechanisms and inefficient disposal of waste. The inconsistent sustainability within an exponential industrial growth of industry has also come with severe environmental impacts such as water scarcities, soil pollution, and so on [39].

In this context, there is an increasing interest in the GSCM practices to promote environmental performance in the RMG sector. [40] examine many GSCM strategies, including eco-design, sustainable sourcing, and waste minimization,  that are found to have a strong positive impact on environmental measures. The existing studies suggest that the firms which implement GSCM is not only reducing its footprint on the ecology but also it is increasing its competitive advantage (competitive even/edge) by satisfying the more and more the demand of the market especially from consumers of the potential and the regulatory [40]. transition(the increase and the potential). 

In addition, the practice of environmental performance measurement, like calculation of carbon footprint and Life Cycle Assessment (LCA), enables companies to measure their sustainability performance and benchmark where and how to improve [41].

Connecting AI and supply transition (ement is a game-changer to advance sustainability in the RMG industry. Supply chain flexibility, using AI technologies, can give firms greater ability to meet market demand while mitigating both scope and scale waste. For example, AI can fine-tune asset and production planning, minimizing surplus inventory and its waste [42]. 

Furthermore, where there is technological readiness and organizational agility, enabling AI-powered real-time data sharing throughout the supply chain could help to enhance levels of transparency and collaboration between participants [43]. This approach not only improves efficiency and productivity but also contributes to inculcating a culture of sustainability by inducing practices towards considering environmental concerns across the supply chain [43].

Furthermore, a good foundation in technology readiness and a strong sense of agile culture are essential to implement AI successfully in the RMG industry. A Culture of Innovation and Continuous Improvement: Building a culture that embraces innovation, and continuous improvement is critical for realizing the value of AI [44].

 With technology and sustainability in harmony, RMG companies can forge a robust, sustainable supply chain that not only satisfies the consumer but also lends holistic support to environmentally recoverable movements [45]. Thereby, the integration of GSCM practices and AI and technological readiness will help to improve the sustainability of the RMG of the country in terms of the environmental challenges that the RMG sector is facing.

3. Conceptual Framework
The conceptual model based on the Resource-Based View (RBV) and dynamic capability theories explains how AI-based supply chain integration (AI-SCI) promotes environmental sustainability in the RMG industry in Bangladesh through both direct and indirect ways. H1: AI-SCI direct effect, i.e., predictive analytics, real-time data processing, and automated decision making will facilitate operational efficiency and waste reduction, and thereby improve resource management, through more accurate demand prediction, and higher operational efficiency [46]. 

More implicitly, this relationship is mediated by technological readiness (H5) because AI technology adoption entails investments in digital infrastructure and workforce competencies, which tend to enable the deployment of eco-efficient technologies such as AI-based water recycling systems or energy optimization algorithms [47].

 At the same time, AI-SCI contributes to supply chain agility (H3) through a capability for timely market disturbance response via real-time analytics, which subsequently facilitates sustainability (H7) through the effort to dynamically react in a range of different ways – for instance, as in sustainable sourcing or waste-minimizing production scheduling [48]. Supply chain agility has a direct positive effect on environmental performance (H6), through facilitating circular practices (such as fabric recycling) and ensuring compliance with changing laws and regulations [49].

 From the RBV perspective, AI-SCI is a strategic resource ∗ Although the application of AI for sustainability has been conceptualized as a strategic resource, we propose that firms seldom treat AI for sustainability as a strategic resource that facilitates the attainment of a sustained competitive advantage as there is a massive gap between a firm’s IT prowess and its intentions around AI to address ecological challenges [50].

 This cross-domain perspective underscores the dual function of AI-SCI involved in Bangladesh’s RMG industry—both as a direct agent to avert ecological consternation and as an indirect means to engender resilience by embracing adaptive technological and operational competencies and provides a templatic approach to the real world of realizing industrial progression and eco-preservation in resource-scarce settings [51].
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Figure 1: Conceptual Framework (Developed by Author)

4. Methodology 
4.1. Research Design
The research is conducted based on a quantitative research design to examine the links among AI-powered supply chain integration (AI-SCI), technological readiness (TR), supply chain agility (SCA), and environmental sustainability (ES) in the Ready-Made Garment (RMG) sector of Bangladesh. A cross-sectional design is employed, which is suitable when collecting data at one point in time to study the inter-relationships of the constructs [52]. 

This model is especially useful in exploration investigations concerned with exploring possible mediating roles of TR and SCA in the association between AI-SCI and ES. The analysis is conducted using Partial Least Squares Structural Equation Modeling (PLS-SEM), an appropriate modeling technique for complex models with mediating effects and non-normal data distributions [53]. PLS-SEM is also useful for studies of small-to-moderate sample sizes, which is the case for this research [54]. However, the cross-sectional nature of this study limits our ability to infer causal relationships among the constructions. Future longitudinal research is recommended to establish causality.

4.2. Population and Sampling
The study employed non-probability convenience sampling due to the practical challenges of accessing a large and randomized sample of managerial professionals in Bangladesh's RMG sector. Given the time constraints and the targeted nature of the respondents (e.g., supply chain managers, operations managers, and sustainability officers), convenience sampling allowed for efficient data collection from individuals directly involved in AI-driven supply chain integration and sustainability practices.

 While this approach may introduce selection bias, the study mitigated this limitation by ensuring a sufficiently large sample size (n=389) and validating the representativeness of the sample through demographic analysis (see Table 1). The sample demographics align with the sector's profile, including mid-career professionals with relevant expertise, which supports the generalizability of findings within the RMG context. Future research could enhance robustness by employing stratified or random sampling techniques.

4.3. Data Collection Procedure
A structured questionnaire was applied for data collection to measure the main constructs of the study: AI-SCI, TR, SCA, and ES. The instrument employed a five-point Likert-type scale (1=Strongly Disagree to 5=Strongly Agree) to measure respondents' attitudes and perceptions. The items for items for each construct were derived from validated scales in previous studies. 

It is used to evaluate neurological impairment and is widely applied to the measurement of neurological function in various diseases. 2.2.2 AI-SCI It was modified from Wang et al. (2023) and Khan & Islam (2023), and a modified version of the ES scale from [55]. The SCA and TR scales were based on Queiroz et al. (2021) and Singh & Patel (2023), on average.

Survey questionnaires were disseminated online (through Google Forms) and printed versions (hard copies distributed while visiting working places) among employees of 10 RMG companies in Dhaka, Bangladesh. Both versions of the questionnaires were conducted simultaneously in both printed and online formats. The use of the internet may have increased the reach and convenience of the survey; however, face-to-face distribution of the surveys may have enabled the clarification of doubts about the survey.

 In this study, participation in the survey was voluntary and the respondents were informed that they should take the survey based on anonymity and confidentiality of their responses to control social desirability bias [56].

The research followed ethical guidelines in the gathering and interpretation of the data. Informed consent forms including the purpose of the study, voluntariness of participation, and confidentiality of the responses, were given to the participants. No personal data was obtained, thus guaranteeing the anonymity of the participants. Confidentiality of respondents was preserved with the storage of responses on encrypted servers, and only accessible to the research team. These actions were carried out to guarantee the anonymity and confidentiality of the participants and to safeguard the ethicality of the study.

4.4. Measures and Validation of Instrument
The validity and reliability of the measurement tools were checked meticulously in this study. A pilot study with 30 subjects was performed to test the clarity and the reliability of the questionnaire. Results of the pilot test. All constructs had Cronbach’s alphas of more than 0.70, confirming the constructs’ internal consistency [57]. 

Second, common method variance (CMV) was controlled for with Harman’s single-factor analysis. The results of the test showed that one factor accounted for 35.6% of the variance, which was less than 50%, suggesting that CMB wasn’t a serious problem [58]. The convergent validity was indicated by AVE, and it is more than 0.50 for all constructs [59], which means that the items measured the given constructs well. Relevant theory was additionally referenced through discriminant validity, and it was found through the Heterotrait-Monotrait (HTMT) ratio that no construct was above the recommended cutoff of 0.85, meaning the constructs were different from one another [60]. 

Although the outer loadings of object productions such as AI-SCI_5 (0.558) and ES_3 (0.537) were below the threshold of 0.70, they were kept ensuring adequate coverage of their construction. These items were considered theoretically important, and their removal did not substantially enhance model fit. However, the composite reliability and AVE of these constructions were still above vet suggested limits to maintain them.

4.5. Data Analysis
The data were analyzed in two major phases: measurement and the structural phases. The reliability and validity were tested based on Cronbach’s alpha, CR, and AVE. All the constructions showed a highly reliable value (Cronbach’s alpha and composite reliability more than 0.70 and AVE > 0.50). 

Discriminant validity was established through the measure of the HTMT ratio, which was less than 0.85 among all constructs. PLS-SEM was applied to analyze the relationships among the constructions. The hypotheses were examined by calculating path coefficients (β), t-values, and p-values with 5000 subsampling bootstraps (Hair et al., 2019). This study also conducted a mediation analysis to examine the mediating effects of TR and SCA on the association between AI-SCI and ES. 

Mediation was used in the analysis following the approach described by Preacher and Hayes (2004) in which the confounding indirect effects are estimated and tested using a bootstrapping procedure.

5. Analysis 
5.1 Evaluation of Measurement Models
To assess a measurement model, convergent validity is determined through reliability evaluation and the alteration of average loadings. The model's fit is satisfactory. Apart from minor values, Table 2 and Fig. 2 indicate that loading results in a 0.60 rise in recommendation value. The collective average variance, valued at 0.50, was considered acceptable according to established learning theories and recommended studies [61]. 

Items with a loading effect of less than 0.50 have been excluded from the scale. The discriminant validity of the variable statements was assessed utilizing the HTMT technique. All principles were assessed to fulfill this condition once a limited number of elements were removed from the model, leading to the conclusion that they exhibited discriminant validity. 

The current analysis exhibits no apparent issues with discriminant validity, as evidenced by the outcomes of both tests. Table 1 presents the demographic information concerning the respondents' gender, encompassing frequency distribution, percentage, and cumulative percentage. 

Table 1:  Demographic Profile of selected variables
	Demographic Variable
	Category
	Frequency
	Percentage

	Age
	20–30 years
	58
	14.9%

	
	31–40 years
	155
	40.0%

	
	41–50 years
	137
	35.1%

	
	51+ years
	39
	10.0%

	Gender
	Male
	272
	70.0%

	
	Female
	109
	28.0%

	
	Other/Prefer not to say
	8
	2.0%

	Education Level
	Diploma
	20
	5.1%

	
	Bachelor’s Degree
	156
	40.0%

	
	Master’s Degree
	213
	54.9%

	Job Position
	Supply Chain Manager
	116
	30.0%

	
	Operations Manager
	98
	25.1%

	
	Sustainability Officer
	78
	20.0%

	
	IT/Technology Manager
	59
	15.1%

	
	Other (e.g., Logistics)
	38
	9.8%

	Years of Experience
	1–5 years
	78
	20.0%

	
	6–10 years
	155
	40.0%

	
	11–15 years
	117
	30.0%

	
	16+ years
	39
	10.0%



Table 1 presents the demographic profile of 389 respondents and the associated relevant characteristics of the study. Most of the respondents were males, accounting for 70.0% which corresponds to the prevailing situation in the managerial position of Bangladesh’s RMG sector, while 28.0% were females, and 2.0% other/preferred not to state. Most respondents were mid-career professionals.

 The age distribution in years was as follows: 40.0% 31–40 and 35.1% 41–50, which shows that the respondents were skilled decision-makers in AI and sustainability. The educational composition was also of a master’s degree holder for 54.9%, and a bachelor’s degree for 40.0%, suggesting high technical know-how.

 The job categories were Supply Chain Managers 30.0%, Operations Managers 25.1%, and Sustainability Officers 20.0%, which represent the respondents from positions that directly deal with the integration of AI in environmental practices. More than 70% had over 6 years’ experience, which qualified them to make judgments on supply chain agility and technology readiness. This demographic profile is appropriate for the focus of the study, which is AI-powered sustainability in the RMG sector.

Table 2 presents reliability research, encompassing a comprehensive investigation of Cronbach's alpha coefficients. AI-Driven Supply Chain Integration (AI-SCI) demonstrates strong internal consistency (Cronbach’s α = 0.825; composite reliability rho_c = 0.872) and acceptable convergent validity (AVE = 0.581), though the outer loading of AI-SCI_5 (0.558) suggests potential refinement [44].

 Environmental Sustainability (ES) shows robust reliability (α = 0.828; rho_c = 0.879) and convergent validity (AVE = 0.599), but ES_3’s low loading (0.537) indicates measurement limitations, aligning with critiques by Martinez (2023). Supply Chain Agility (SCA) meets reliability standards (α = 0.795; rho_c = 0.863) with strong convergent validity (AVE = 0.614), despite SCA_3’s moderate loading (0.672), reflecting challenges in operationalizing agility [41]. Technological Readiness (TR) emerges as the most robust construct (α = 0.858; rho_c = 0.905; AVE = 0.705), with high outer loadings (0.730–0.887), underscoring its pivotal mediating role in AI adoption [45]. 

While all constructs satisfy reliability (α > 0.70) and convergent validity (AVE > 0.50) criteria (Fornell & Larcker, 1981), the weaker loadings of ES_3 and AI-SCI_5 highlight opportunities for scale improvement. These results validate the theoretical model, particularly the mediating roles of TR and SCA in linking AI-SCI to ES, offering empirical support for advancing sustainable practices in Bangladesh’s RMG sector. Table 3 illustrates the association among the variables. 

Table 3 assesses the convergent validity of the variables that have not been thoroughly investigated. The discriminant validity of the candidate variables, assessed using the Fornell-Larcker Criterion and HTMT ratio, is presented in Table 3 and 4.  Hair et al. (2019) and Henseler et al. (2015) assert that the HTMT ratio threshold should ideally be below 0.85 in a conservative context, while values over 0.90 may also be deemed appropriate.
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Figure 2: Measurement model of the selected variables

Table 2: Measurement model analysis (reliability/validity metrics)
	
Contract 
	Outer loading 
	Cronbach's alpha 
	Composite reliability (rho_a) 
	Composite reliability (rho_c) 
	Average variance extracted (AVE) 

	AI-Driven Supply Chain Integration (Wang et al., 2023; Khan & Islam, 2023)

	
	0.825 
	0.856 
	0.872 
	0.581 

	AI-SCI_1 
	0.768 
	
	
	
	

	AI-SCI_2 
	0.861 
	
	
	
	

	AI-SCI_3 
	0.822 
	
	
	
	

	AI-SCI_4 
	0.764 
	
	
	
	

	AI-SCI_5 
	0.558 
	
	
	
	

	Environmental Sustainability (Ahsan & Rahman, 2023; Martinez, 2023)

	
	0.828 
	0.878 
	0.879 
	0.599 

	ES_1 
	0.793 
	
	
	
	

	ES_2 
	0.762 
	
	
	
	

	ES_3 
	0.537 
	
	
	
	

	ES_4 
	0.917 
	
	
	
	

	ES_5 
	0.810 
	
	
	
	

	Supply Chain Agility (Inman and Green 2021; Braunscheidel et al., 2009; Bak et al., 2020; Queiroz et al.,
2021)
	
	0.795 
	0.834 
	0.863 
	0.614 

	SCA_1 
	0.805 
	
	
	
	

	SCA_2 
	0.830 
	
	
	
	

	SCA_3 
	0.672 
	
	
	
	

	SCA_4 
	0.817 
	
	
	
	

	Technological Readiness (Singh & Patel, 2023; Khan & Rahman, 2023)
	
	0.858 
	0.862 
	0.905 
	0.705 

	TR_1 
	0.861 
	
	
	
	

	TR_2 
	0.887 
	
	
	
	

	TR_3 
	0.730 
	
	
	
	

	TR_4 
	0.870 
	
	
	
	



Table 3: Discriminant validity (HTMT approach).
	Items 
	AI-SCI_ 
	ES_ 
	SCA_ 
	TR_ 

	AI-SCI_ 
	
	
	
	

	ES_ 
	0.731 
	
	
	

	SCA_ 
	0.892 
	0.749 
	
	

	TR_ 
	0.863 
	0.752 
	1.024 
	



Table 4: Fornell-Larcker criterion
	Items 
	AI-SCI_ 
	ES_ 
	SCA_ 
	TR_ 

	AI-SCI_ 
	0.762 
	
	
	

	ES_ 
	0.634 
	0.774 
	
	

	SCA_ 
	0.813 
	0.661 
	0.783 
	

	TR_ 
	0.793 
	0.661 
	0.888 
	0.840 



5.2. Analysis of Structural Models
Our study’s latent variables and constructs are illustrated in Figure 3. The results from our analysis allow us to explain how each path in the model is found to have a positive and significant effect. It is appropriate and applicable to the aims and purposes of the study due to the unambiguous and definite pattern that is observed throughout the structural model and is claimed to strengthen its validity.

Table 6 demonstrates that AI-Driven Supply Chain Integration has a significant positive correlation with Environmental Sustainability (beta = 0.229, t value = 3.716, p-value = 0.000). There is a positive correlation between AI-Driven Supply Chain Integration and Supply Chain Agility (beta = 0.813, t value = 72.416, p-value = 0.000). Moreover, AI-Driven Supply Chain Integration has a positive relationship with Technological Readiness (beta = 0.793, t value = 56.279, p-value = 0.000). 

Also, Supply Chain Agility contributes to Environmental Sustainability significantly (beta = 0.232, t value = 2.559, p-value = 0.011). In addition, a positive correlation between Technological Readiness and Environmental Sustainability has been established (beta = 0.274, t value = 3.290, p-value = 0.001). The corroborating findings from several model fit indices enhance the model’s resilience and make it more useful for explaining the interwoven relationships required for the research.
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Figure 3: Structural model of selected variables

Table 5 displays the R² values, the coefficient of determination, and the adjusted R² values for Environmental Sustainability (ES_), Supply Chain Agility (SCA_), and Technological Readiness (TR_) calculated with Smart PLS. These measures represent the degree of variability explained by the model. For ES_, R²=0.480 (adjusted R²=0.476) shows almost one-half or 48% of the AI-driven supply chain integration within its SCA_ and TR_ mediators overfed AI sustainability over environmental sustainability.

 SCA_ exhibits the greatest explanatory value (R²=0.662, adjusted R²=0.661), meaning that 66% of the AI integration’s impact on the sustainability of supply chain agility is observed. Likewise, TR_ (R²=0.628, adjusted R²=0.627) also contends that 63% of the variance in technological readiness is accounted for, which strengthens his mediating position.

 The pronounced high R² values about SCA_ and TR_ emphasize the profound relationship of these constructs to AI integration, while the relatively lower R² for ES_ denotes that other exogenous variables probably affect environmental sustainability to a greater degree within the RMG sector of Bangladesh, which is consistent with the mediation focus of the study.

Table 5: R-squared and R-squared adjusted
	Items
	R-square 
	R-square adjusted 

	ES_ 
	0.480 
	0.476 

	SCA_ 
	0.662 
	0.661 

	TR_ 
	0.628 
	0.627 



Table 6: For direct effect
	Path
	Original sample (O) 
	Standard deviation (STDEV) 
	T statistics (|O/STDEV|) 
	P values 
	2.5% 
	97.5% 

	AI-SCI_ -> ES_ 
	0.229 
	0.062 
	3.716 
	0.000 
	0.107 
	0.346 

	AI-SCI_ -> SCA_ 
	0.813 
	0.011 
	72.416 
	0.000 
	0.793 
	0.837 

	AI-SCI_ -> TR_ 
	0.793 
	0.014 
	56.279 
	0.000 
	0.765 
	0.821 

	SCA_ -> ES_ 
	0.232 
	0.091 
	2.559 
	0.011 
	0.053 
	0.411 

	TR_ -> ES_ 
	0.274 
	0.083 
	3.290 
	0.001 
	0.112 
	0.437 



Table 7 shows the values of f² (effect size) in the table to evaluate the effectiveness of the relationships between constructs within the PLS-SEM model. AI-driven Supply Chain Integration (AI-SCI) takes effect on Supply Chain Agility (SCA__) f² = 1.956 and technological readiness TR_ f² = 1.689, which means that AI-SCI influences these mediators strongly. 

Even so, AI-SCI has a small effect on Environmental Sustainability (ES_) directly f² = 0.032; implying that the AI-SCI impact on sustainability is mostly through … SCA_ and TR_. The small effect of ES_ on SCA_ f² = 0.019 and TR_ on other constructs f² = 0.028 denotes weaker direct relations between sustainability and agility and readiness. 

These results. Manifestations underscore the picture that SCA_ and TR_ are the key mediating variables that consequently sustain the impact of AI-SCI to accomplish Environmental Sustainability in the RMG sector of Bangladesh, integrating other AI-SCI and SCA_ and TR_ and pointing toward the less obvious routes to sustainability, consistent with the emphasis of the study on mediation processes.

Table 7: F-Square: Predictive relevance (effect size)
	Items 
	AI-SCI_ 
	ES_ 
	SCA_ 
	TR_ 

	AI-SCI_ 
	
	0.032 
	1.956 
	1.689 

	ES_ 
	
	
	
	

	SCA_ 
	
	0.019 
	
	

	TR_ 
	
	0.028 
	
	



Table 8: Q²predict, RMSE, and MAE
	[bookmark: _Hlk190160309]Items 
	[bookmark: _Hlk190775294]Q²predict 
	RMSE 
	MAE 

	ES_ 
	0.397 
	0.779 
	0.591 

	SCA_ 
	0.655 
	0.591 
	0.460 

	TR_ 
	0.624 
	0.617 
	0.509 




The Q2 value is used to assess the predictive significance of the route model in Table 8. In terms of reflective measurement constructs, a Q2 value greater than zero means that the external constructs have predictive relevance for the endogenous constructs [62]. 

The model demonstrates a substantial level of predictive capability, which is exhibited through both moderate and high Q2 values (Table 8). The table shows the predictive performance results (Q² predict, RMSE, and MAE) related to the three constructs: Environmental Sustainability (ES), Supply Chain Agility (SCA), and Technological Readiness (TR), using Smart PLS within the scope of the study on AI-based supply chain integration in the RMG industry of Bangladesh. 

Es and SCA, and TR are 0.397 and 0.655, and 0.624, respectively. All these values show that the constructions have predictive relevance, but SCA is the strongest predictor.

Based on the computed accuracy values, SCA (RMSE = 0.591, MAE = 0.460) performed the best, followed by TR (RMSE = 0.617, MAE = 0.509) and ES (RMSE = 0.779, MAE = 0.591). These results indicate that Supply Chain Agility (SCA) and Technological Readiness (TR) serve as powerful mediators in the model concerning AI-enabled supply chain integration and Environmental Sustainability (ES), where TR was found to be weaker and less predictive, signaling to the study's model an opportunity for further development.



5.3. Analysis of Mediation
This study explores the relationship between AI-Driven Supply Chain Integration and Environmental Sustainability by analyzing the mediating effects of Technological Readiness and Supply Chain Agility. The objective of the present study is to investigate the phenomenon under examination. A stringent methodology is employed to thoroughly investigate these mediating effects. Initially, as seen in Table 9, the calculation of individual indirect effects is conducted.

 The bootstrapping method is employed inside the Partial Least Squares (PLS) framework to rigorously assess the importance of these indirect effects. A comprehensive analysis elucidates the nature and extent of these interventions. Table 9 illustrates the correlation between AI-Driven Supply Chain Integration and Environmental Sustainability, even without mediators, Technological Readiness, and Supply Chain Agility. 

Table 9: For Specific Indirect Effect: Mediation
	Path
	Original sample (O) 
	Standard deviation (STDEV) 
	T statistics (|O/STDEV|) 
	P values 
	2.5% 
	97.5% 

	AI-SCI_ -> TR_ -> ES_ 
	0.217 
	0.066 
	3.264 
	0.001 
	0.089 
	0.350 

	AI-SCI_ -> SCA_ -> ES_ 
	0.189 
	0.074 
	2.562 
	0.010 
	0.043 
	0.334 



Nevertheless, the inclusion of the mediators— Technological Readiness and Supply Chain Agility —preserves the significance of this connection. This approach emphasizes the significance of several mediators, particularly Technological Readiness and Supply Chain Agility, where the relationship between AI-Driven Supply Chain Integration and Environmental Sustainability is positively mediated by Technological Readiness (beta = 0.217, t value = 3.264, p-value = 0.000) and Supply Chain Agility (beta = 0.189, t value = 2.562, p-value = 0.010). This finding provides valuable insights into the complex.

6. Discussion
The result of this study advances the understanding of the impact of AI-powered supply chain integration on the environmental sustainability of the RMG sector in Bangladesh through technological readiness and supply chain agility. 
The findings help understand how the integration of AI can aid in achieving sustainable measures while simultaneously underlining the important mediating effects of TR and SCA. This discussion elaborated on the primary findings and their implications for the extant literature, along with the drawbacks and suggestions for future studies.
The study indicates a positive relationship between AI-Driven Supply Chain Integration and Environmental Sustainability that is also statistically significant (β = 0.229, p < 0.000). This underscores the importance of AI in supply chain management, as highlighted by previous studies such as Wang et al. (2023) and Khan & Islam (2023), which explains the role of AI in waste optimization and resource utilization. 

The advanced capabilities of AI technologies for real-time data processing, predictive analytics, and automation are crucial for sustainable supply chain practices, for example, in controlling inventory and preventing overstocking and reducing waste [66].

Additionally, it is found in the study that Supply Chain Agility (β = 0.813, p < 0.00) and Technological Readiness (β = 0.793, p < 0.001) mediate significantly the relationship between AI-SCI and ES. The most notable medication of SCA suggests that AI integration tends to expand supply chains' responsiveness to market changes, disruptions, and sustainable environmental challenges [64].

 For instance, AI can increase accuracy in forecasting demand, thus allowing firms to modify production schedules in a way that minimizes excess inventories. This leads to less waste and less environmental degradation.
By the same token, the mediating effect of TR illustrates how organizational readiness may be utilized in the adoption of AI technologies for sustainable business practices [65]. Firms that are deemed to possess TR are more likely to use AI technologies, which boosts supply chain performance and sustainability, as the organization becomes able to efficiently implement the technologies. This is in accordance with the Technology-Organization-Environment (TOE) framework that claims technological readiness as one of the determinants that can greatly impact the integration of innovations within organizations [66].

The analysis also reveals the primary and secondary consequences of AI-SCI on ES. Even though the primary consequence is rather small, the indirect consequences through SCA and TR are quite large, which suggests that the fundamental influence AI-SCI has on ES is channeled through these constructs. 

This result corroborates the mediation analysis, which shows that SCA and TR, when included in the model, maintain the significance of the AI-SCI-ES relationship even in the presence of direct effects. This is in accordance with the theoretical framework of this study, which states that AI-SCI impacts ES through increased agility and greater technological readiness.
7. Practical Implications
There are several implications relevant for managers and policymakers in the RMG industry that emerge from the findings. First, there exists a strong linkage of AI-SCI with SCA, which implies that the firms should concentrate their resources on investments towards AI technology to improve the supply chain agility of the firms. 

One example of such tools is AI-enabled demand forecasting, inventory management, and logistics optimization, which can provide agility and sustainability improvements in terms of reducing environmental impact and time-to-market [67]. For instance, AI-driven demand forecasting can support companies in adjusting their production to actual demand, thereby lowering overproduction and waste.

Second, the crucial TR on linking AI-SCI and ES suggests that organizations need to develop technical capability and an innovative culture. This includes staff training, IT infrastructure renewal, and partnering with technology vendors to facilitate the adoption of AI [68]. 

Policy makers can facilitate these efforts by creating incentives for technological deployment and fostering collaboration between industry and academia. For instance, government grants or financial incentives might incentivize companies to invest in AI technologies that promote sustainability. 

Finally, the emphasis on environmental sustainability in the study underlines the need to incorporate sustainability objectives in AI-enabled supply chain strategies. Organizations should seek to integrate AI projects with wider environmental goals, including carbon emission reduction, waste minimization, and circular economy initiatives  [69]. For example, AI can be employed to improve transportation routes, which in turn decreases transportation fuel usage and greenhouse gas emissions.

8. Limitations and Future Research Directions
Although this study is very informative, it is not without limitations. First, the study is set within the context of Bangladesh’s RMG industry, and results may not be generalizable across all industries or geographies. It might be interesting for future studies to investigate the generalizability of the model in other industries (e.g., manufacturing, retail, health care). For instance, the potential of AI-SCI in the automotive or electronics field to improve environmental sustainability could be examined.
Second, because the study is based on cross-sectional data, it is impossible to ascertain whether any causal relationships exist . Longitudinal studies of these parameters might offer further insights into these dynamic interactions of AI-SCI, SCA, TR, and ES over time. 
One example is a long-term study that would look at the effects of AI adoption on supply chain agility and environmental sustainability over the course of a number of years, leading to a deeper understanding of these relationships. The measurement model included some items with lower outer loadings, which may reflect the nascent stage of AI-SCI research in the RMG sector. Future studies could refine these items or employ larger samples to bolster their psychometric properties.

Third, this research only considers two mediators—SCA and TR; however, other factors such as organizational culture, leadership, and external environmental pressure could play roles in the AI-SCI and ES relationship. These other mediators can be tested in future research to explain sustainable supply chain practices. For example, it might be interesting to explore the contribution of leadership to sustainability and innovation cultures.

9. Conclusion
This study highlights the importance of AI-based supply chain integration for sustainability in the context of Bangladesh's Ready-Made Garment (RMG) industry. The results show that implementing AI solutions can help improve both waste management and resource management and foster better practices in these areas, altogether contributing to a more sustainable sector. 
Using AI, businesses can streamline not only their supply chains  but also integrate their operations with larger environmental stewardship efforts. 
The focus of this research is on technological readiness and supply chain agility. They are the two essential keys that make it possible for companies to deploy AI solutions in production and to quickly react to rapidly changing market requirements and environmental laws. 
When companies develop their technical capacity and operational flexibility, they can establish a synergistic effect between economic and sustainability performance.
 The implications of this study are useful for industry decision-makers and regulators. It underscores the speakers' belief that investment in AI, married with a company culture focused on sustainable practices, is essential. Such twin investments can help companies address environmental issues while also growing and being competitive in the world. 
This study is limited to the RMG sector, but its findings apply to the industries more broadly, indicating that similar strategies would have wider applicability and similar benefits. Research Agenda for Future work should seek to extend these insights by studying the impact of AI-enabled supply chain integration on sustainability in other manufacturing sectors and other countries.
 Furthermore, a broader examination of, for instance, between-organizational culture and leadership interaction will be beneficial to gain a full understanding of the effective use of AI technologies to bring about sustainable outcomes. Finally, as with other emerging technologies, this study underscores the need to incorporate advanced technologies into supply chain practice as a means of achieving a more sustainable future.
 By embracing AI-powered solutions and creating an agile, tech-prepared culture, organizations can not only make a meaningful contribution to environmental challenges but also differentiate themselves in a rapidly growing eco-friendly marketplace.
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