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Abstract: Climate risks and economic uncertainties have been the triggering points of energy price spillovers,
which are crucial to determining the global development path. Therefore, this study is designed to experiment
with the diverse transmission patterns and interconnections between physical climate (PCR), transitional
climate risks (TCR), and global economic policy uncertainty (GEPU) concerning various energy commodities.
The study employs time and frequency domain econometric methodologies across two different monthly
sample sizes. Our findings suggest that the overall connectedness for PCR, TCR, GEPU and energy prices has
shown an increasing trend as we move from a shorter time frame to a longer one. It indicates that the magnitude
of connectedness between these factors and energy prices tends to be stronger. Across all timelines, GEPU
shows the highest connectedness with COAL, ULSD, BRENT, WTI, and NG compared to climate risk. Both PCR
and TCR show similar connectedness patterns to energy prices, with a slightly higher value for TCR in most
cases. Additionally, PCR serves as a net transmitter of all five energy prices only for 1 month and 1- 3 months,
while TCR is a net transmitter to only ULSD across the short, medium, and long-run frequency bands. However,
GEPU is not a net transmitter for ULSD at all frequencies and is transmitting net spillover on other energy
prices. Its net transmission is more pronounced on COAL, BRENT, and WTI for 1 month, 1-3months, and 3-
6months, respectively. These outcomes are further validated by employing the frequency domain causality test,
which discloses that PCR, TCR, and GEPU are Granger causes of energy prices across different frequencies.

1. Introduction:

Energy is a crucial component of a country’s economic system and has a significant impact that ripples beyond
national borders, influencing geopolitics and reshaping the fundamental foundation of stability and economic
prosperity worldwide [1].The global energy mix is a complex interplay of renewable and nonrenewable
resources, where fossil fuels still dominating and their prices directly influence energy consumption and
investment decision, impacting both energy transition and environmental justice by shaping access to clean
energy and sustainable practices [2]. Energy has changed from being only a resource for production and
consumption. This transformation has been fueled by the development of international financial markets and
the introduction of new investment paradigms. It is a physical investment and an essential natural resource
(Zhang, 2018). However, the dynamics determining fossil fuel energy pricing are complex and susceptible to a
wide range of factors as commodities travel great distances and are frequently imported from unstable political
environments; therefore, energy prices remain volatile due to political instabilities (European Commission
2023). The complex web that affects energy prices comprises various factors, including supply and demand
dynamics, geopolitical events, decisions made by the Organization of the Petroleum Exporting Countries
(OPEC), and weather patterns [3]. Collectively, these factors exert considerable influence over the intricate
equilibrium of vital energy markets, determining the fluctuations in their costs with noteworthy
consequences[4].

Climate risk, specifically physical climate risk (PCR), transitional climate risk (TCR), and global economic policy
uncertainty (GEPU) significantly impacts growth and energy transitions by shaping investment decisions and
influencing financial markets, including stock returns [5]. Meanwhile, nonrenewable energy sources like coal,
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ultra-low sulfur diesel (ULSD), Brent oil, West Texas Intermediate (WTI) crude oil, and natural gas remain
central to policymakers and public discourse due to their significant adverse environmental impacts and the
urgent need for sustainable alternatives. In literature, many studies primarily focus on the spillover and
connectedness between climate risk and market returns on stocks and energy markets using methods such as
the cross-quantilogram approach and MGARCH [6], time-varying parameter vector autoregression (Guo et al.,
2024), or exploring the effect of climate risk on energy equity (Li et al., 2024), climate risk effects on the dynamic
conditional correlation between clean and dirty energy prices using NARDL/ARDL (Li et al., 2024), and
dynamic dependencies of fossil energy and investor [7]. However, the connectedness and spillover between
PCR, TCR, GEPU, and dirty energy prices remain unresolve, which serves as the major research motivation for
this study[8].In the intricate relationship between energy and finance, the main issue is the risk ingrained in
energy pricing; this is a known aspect that clouds the financing of energy projects. Price swings in the energy
market can substantially impact several areas, including the financial system, food security, business profits,
stock prices, energy generation intensity, and import-export trade dynamics. Previous studies have carefully
examined macroeconomic factors as risk factors for energy prices [9],[10],11]. Moreover, a near-term trend
suggests an increasing danger to energy security attributed to climate-related variables [12] This relationship
between energy costs and weather extremes takes center stage in energy-finance studies. Droughts and
decreased rainfall are two events that significantly influence the risks associated with energy costs [13].
Furthermore, the trend of climate risk indicates that the frequency of catastrophic weather events will increase
energy cost volatility [14].

The energy industry is heavily impacted by geopolitical and climate risks, including the possibility of weather-
related disasters or future developments that exacerbate their long- term effects [15]. This effect impacts energy
production, supply, and the durability of both the present and future energy frame. Extreme weather events
such as heat waves and droughts are already burdening current energy generation, which has an immediate
effect on the fragile structure of energy systems[16]. Therefore, climate change-induced events disrupt the
function of energy systems [17]. There are two types of hazards associated with climate change: transition risks
and physical risks. Hurricanes, floods, and heat waves are imminent hazards that fall under the former category
and have a tangible impact on the energy industry. On the other hand, transition risks centre on changes in
government regulations, tax laws, and technology that try to reclassify carbon-intensive assets as conventional
assets. These factors can magnify losses due to their interdependence within the financial system [18]. When
assessing the impact of both forms of climate risk on the energy industry and developing resilient plans for the
future, a comprehensive evaluation and deliberate mitigation of these risks are essential[19].

The previous study by In et al. (2022) explored that renewable energy investment is more resilient than carbon-
intensive fossil energy assets due to rising climate risks. Similarly, Reboredo and Ugolini (2022) noted that firms
with the lowest climate risks perform better financially. Dutta et al. (2023) noted that high climate risk raises
the prices of green energy products with less volatility. Similarly, the study of (Shafiullah et al., 2021) witnessed
that economic policy uncertainty (EPU) significantly affected renewable energy consumption in the United
States. The study of Wang et al. (2023) reported significant correlations between economic policy uncertainty
and energy markets at various stages. Similar findings have also been explored in the study of Li et al. (2023a),
while the study of Yi et al. (2023) noted that EPU is responsible for reducing renewable energy consumption.
These findings from the empirical work have signaled that climate risk and EPU are significant contributors in
determining the energy demand and supply in global markets, which calls for appropriate attention[20].

From the previous discussion, we noted that this research starts the initial debate on the spillovers from physical
climate risk, transitional climate risk, and GEPU to global energy market, including coal, gas, diesel and oil, by
a comprehensive climate uncertainty index (physical and transitional climate risks) and monthly global
economic policy uncertainty ( GEPU) through time-frequency decomposition paradigm instrumented by
Diebold and Yilmaz (2014) and Barun'ik and K'rehlik (2018) for global energy market[21]. From this
perspective, our contributions encompass a threefold advancement in the academic domain. Firstly, we expand
the existing scholarly discourse concerning the impact of climate change on international energy prices,
furthering the exploration of how climate variations are re- shaping diverse energy markets. Secondly, we
augment the body of research highlighting the influence of text-based uncertainty metrics —such as economic
policy uncertainty and geopolitical risks — on energy prices. Thirdly, and notably, our most pivotal contribution
lies in our investigation into the asymmetric spillover triggered by monthly fluctuations in physical climate risk
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(PCR), transitional climate risk (TCR), and global economic policy uncertainty (GEPU) onto energy prices,
coupled with scrutiny of frequency-based Granger causality stemming from these emissions to energy prices.
As per the authors” knowledge, limited literature has delved into the spillover effects of monthly PCR, TCR,
and GEPU on energy prices, making this inquiry a novel and significant addition to the existing literature.

The rest of the paper is structured as follows: The second part analyses past literature[22]. The third part
explains data and methods, the fourth part explains the results and discusses the obtained results and the final
part summarizes the results with future recommendations[23].

2. Literature Review

The actual impacts of climate change are visible, and international organizations are seriously working on
mitigating the effects of climate change [24]. The effects of climate change have been perceptible in many
dimensions, including the crucial impacts on economic systems [25]. Climate risk uncertainty has become a
global concern regarding its challenges towards energy prices and has become a center of researchers” attention.
Therefore, the worldwide transition to clean and renewable energy become an emerging phenomenon while
the uncertainties in climate policies are also surging [26]. Globally, the energy policy is instrumented to alleviate
the consumption of fossil fuels and limit greenhouse gas emissions. In contrast, climate uncertainty entails
changes in the supply and demand of energy prices, leading to fluctuations in energy rice prices in the global
market. Similarly, the spillover effects of the speculations in energy prices have marked significant volatility in
global energy prices [27]. Therefore, bringing fresh insight into the effects of climate and economic policy
uncertainties on energy spillover effects is essential to build consensus among global policymakers[28].
Conducting a pre- and post-COVID scenario, Raza and Khan (2024) concluded that climate uncertainty remains
crucial in determining the price volatility of precious metals. By bringing the Quantile on Quantile regression
in the application, Cheng et al. (2023) showed that climate change uncertainty, economic policy uncertainty and
energy price volatility are intertwined. From these points, the current study distributes the existing literature
and discusses the PCR, TCR, and GEPU on various energy indicators[29].

The first stream of research highlighted the impacts of climate policy uncertainty on the energy and financial
market variables, including energy consumption, returns and volatility of green and brown energy stock, and
other parameters used to gauge the energy markets. For example, employing the time- varying Granger
causality approach [30], it was narrated that climate policy uncertainty and energy markets have feedback
effects with a time-varying pattern. Their study further disclosed a significant Granger causality when climate
policies are enacted or changing weather patterns are observed. Studying the US data in the Vector
Autoregressive (VAR) model, Li et al. (2023b) concluded that climate policy uncertainty and renewable energy
have positive and negative connections; for example, when the authorities are inclined towards climate policies,
the relationship becomes positive and vice versa. Similarly, applying the time-varying VAR approach, Zhou et
al. (2023) stated that CPU, renewable energy and oil prices have time-varying relationships[31]. Their findings
stated that in most periods, the CPU positively influences oil prices and renewable energy in the short and long-
run. Using the novel econometric approaches, including wavelet and quantile on-quantile analysis, the study
by Siddique et al. (2023) tested the effects of CPU on energy, renewable energy and low carbon energy, implying
that a CPU negatively influences fossil fuels at various quantiles and frequencies, whereas, their response to
renewable energy remains positive at various quantiles and frequencies[32]. Another asymmetric analysis by
Karim et al. (2023) on CPU and energy metals in a cross-quantilogram approach pronounced a significant
interaction between the two variables. Further, Syed et al. (2023) observed that the climate policy uncertainty
impedes renewable energy consumption for the United States using the Fourier Augmented ARDL model.
Similarly, Sarker et al. (2023) found spillover effects of the CPU on clean energy prices in the United States.
Furthermore, using the monthly data between August 2005 and March 2021 (Hoque et al., 2023), it was further
reported that shocks to the CPU transmit to the energy markets, supporting the spillover effects of the CPU on
energy. In these studies, we have noted that little consensus has been built on the spillover effects of CPU on
energy markets, which is the primary objective of the current study[33].

In a second stream, we highlighted research, determining the interrelationship between GEPU and energy

indicators. For instance, the study by Wang et al. (2023) using the quantile on-quantile regression finds that
economic policy uncertainty has positive and significant impacts on the energy markets. Similarly, Mokni et al.
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(2024) reported that climate and economic policy uncertainty are interconnected at various quantiles. The
spillover effects of economic and climate change policies are observed for the G7 countries[34]. Testing the
impact of EPU on renewable energy consumption using the monthly data between 2003 and 2020 in the CS-
ARDL model Yi et al. (2023) discovered that EPU negatively influences renewable energy consumption. At the
same time, the study of Zhang et al. (2023) recognizes the EPU as the significant predictor of energy prices.
Likewise, testing Sub-Saharan African data using CS-ARDL Ogede et al. (2023) found that EPU raises energy
poverty in the study area. Ivanovski and Marinucci (2021), applying various econometric approaches, reported
that EPU is highly reluctant to use renewable energy, highlighting that higher uncertainties dampen the uptake
of renewable energy[35]. Most of the studies in the past have been devoted to reflecting the effects of EPU on
environmental indicators or targeting the energy consumption and renewable energy consumption dimensions.
However, their response to the energy markets, especially the spillover effects of EPU in energy markets,
remains undressed. Therefore, the current research would undoubtedly bring a fruitful consensus[36].

2.1 Literature gap

From the literature review above, climate change uncertainty and economic uncertainties are crucial in affecting
the supply and demand mechanism and the speculation and spillover effects of energy prices in global markets.
The existing literature pointed out various channels of energy price volatility and tried to explain the spillover
effects of energy prices to other markets[37]. However, limited literature has emphasized the impacts of climate
policy (PCR and TCR) and economic policy uncertainty on energy markets, directly influencing energy prices.
Accordingly, building consensus to explain the CPU and EPU spillover effects on the energy market is essential.
This will provide a basis for international investors to plan and invest in more productive, climate-friendly,
clean and green energy services to achieve carbon neutrality[38]. Similarly, facilitating a stable economic
paradigm will help policymakers deal with climate policy-related issues determining the market demand and
supply of energy products[39].

3. Data and Methodology

The Materials and Methods should be described with sufficient details to allow others to replicate and build on
the published results. Please note that the publication of your manuscript implies that you must make all
materials, data, computer code, and protocols associated with the publication available to readers. Please
disclose at the submission stage any restrictions on the availability of materials or information. New methods
and protocols should be described in detail while well-established methods can be briefly described and
appropriately cited.

3.1 Data

The article extends the work of Rao et al. (2023), focusing on how physical climate risk (PCR), transitional
climate risk (TCR), and global economic policy uncertainty (GEPU) influence worldwide energy prices. It
examines the effect of these factors on different energy commodities: COAL; Ultra-low Sulphur Diesel (ULSD)
in New York, the US Gulf Coast, and Los Angeles; Brent oil (BRENT); West Texas Intermediate Crude Oil (WTTI);
and the global price of Natural Gas (NG). The energy prices we focus on are critical in shaping the global energy
landscape, with significant implication for both the environment and the climate economy. WTI is a major
global oil benchmark, crucial for setting oil prices and forming the basis of oil futures contracts on the New
York Mercantile Exchange. Similarly, BRENT is crucial, as it prices approximately two-thirds of the world’s
internationally traded crude oil. Its influence extends across Europe, Africa, and the Middle East, making it a
central reference point in the global oil market. According to the International Energy Agency (IEA) from 1990
to 2020, the role of NG and COAL in global energy generation market increased significantly, with growth rate
of 262.4% and 113.4%, respectively. Conversely, oil's contribution to energy generation dropped by 49.5%
during the same periodFor our research we used two sets of monthly data. The first set, covering PCR and TCR,
ranges from January 2000 to November 2019. Physical climate risk and transitional climate risk data are
obtained from the study of Faccini et al. (2023). These metrics are calculated using Latent Dirichlet Allocation
(LDA), an unsupervised machine learning model. PCR is measured based on indicators like global warming,
extreme weather events, and natural disasters. In contrast, TCR is gauged by Analyzing U.S. climate policy and
international summits[40]. We aggregated daily data into monthly datasets for our analysis. While the second
set focuses on GEPU from January 1997 to September 2023. Detailed information on these variables, including
their units, frequency, and sources, are shown in Table 1.
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Table 1: Description, frequency, and source of the variables

Variables Description Frequency Source

PCR Physical climate risk Monthly  Faccini et al. (2023)
TCR Transitional climate risk Monthly  Faccini et al. (2023)
GEPU Global Economic Policy Uncertainty Index-adjusted GDP Monthly  Policy uncertainty
COAL Global price of coal, U.S. Dollars per Metric Ton Monthly  FRED

USD Spot price of Ultra-low Sulphur Diesel of New York, Monthly  FRED

US Gulf Coast and Los Angeles CA ULSD (USD/- Gallon)

BRENT Global price of BRENT (U.S. dollars per Barrel) Monthly  FRED

WTI Global price of WTI Crude Oil (U.S. Dollars per Barrel) Monthly  FRED

NG Global Price of Natural Gas, USD/ Million Btu Monthly  FRED

3.2 Methodology

The theoretical foundation of this research is based on the theory of integration and price transmissions. Market
integration refers to the extent to which the prices of various goods and commodities in different market are
interconnected. It also assesses the degree to which prices, supply, and demand in one market are influenced
by prices and conditions in other related markets. Additionally, price transmission theory examines the
elasticity of price fluctuations between various markets, providing insights into how changes in one market are
transmitted to another. The theory of economic information systems explores how the flow of information
affects an economy and the decisions made to sustain it. In this context, the relationships among PCR, TCR, and
GEPU with global energy prices are considered an integral part of the information economic system. For our
study, we constructed three sets of models.

Model 1: PCR = COAL + ULSD + BRENT + WTI + NG
Model 2: TCR = COAL + ULSD + BRENT + WTI + NG
Model 3: GEPU = COAL + ULSD + BRENT + WTI + NG

Models 1, 2, and 3 examine the monthly spillover effects of PCR, TCR, and GEPU on the global energy prices
of COAL, ULSD, BRENT, WTIL and NG, respectively.

To examine the interconnectedness among PCR, TCR, GEPU, and global energy prices, we utilize the
methodological framework developed by [41],[42]. Connectedness measures only the pairwise association and
is primarily wed to linear. To address this issue DY proposed a unified approach and framework for empirical
measurement and conceptualization of connectedness at a diverse level. This framework is based on the VAR
model's variance decomposition, which is closely linked to modern network theory. Variance decomposition
provides imperative information to measure the future uncertainty of a particular variable of interest stemming
from a shock in another variable[43]. DY framework is built upon the tradition of dynamic predictive modeling
under misspecification and assess the share of forecast error variation in diverse location due to shocks arising
elsewhere[44]. On the other hand, to understand the source of connectedness we also utilize BY model. As
shock to economic activity has a mixed effect on variables at various frequency with various strength[45]. So,
BK proposed framework has the ability to measure the level of connectedness in long, medium, and short-term
frequency response to shocks., and short-term frequency response to shocks[46].

3.2.1

DY framework is built on the concept of variance decomposition in econometrics. This approach breaks down
the forecast error variance of a particular variable, labelled as ‘', into components linked to the other variables
in the system. This decomposition aims to analyze the forecast error variance derived from a generalized vector
autoregression model, focusing on examining the interconnectedness within the system. The connectedness
metrics range from basic to comprehensive system-wide analyses, emphasizing the variance decomposition
from “non-own” or “cross” contributions[47]. We started our spillover analysis considering the following VAR
model with order p.
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Figure 1: Empirical scheme
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Where x, is a K X 1 vector at time t and B represents the constants of the vector, and B is the coefficient of
variables. Transforming equation 1 into the matrix form, we get:

X, =D+BX,_, + U, (2)

In Equation 2 B is equal to pK X pK matrix and

X¢ d Bl BZ . Bp—l Bp
Xt-1 0 Iy O . 0 0
0 I, 0 0

x=| |.p=||.B= ' )
Xe—p 0 [0 0 Iy o‘

Equation 3 is used to analyze the spillover effects of PCR, TCR, and GEPU on energy prices of the VAR model
by decomposing their variance. This decomposition helps us to understand the extent to which each variable
contributes to the variance of others. The next step is to calculate the H-step ahead forecast for x;, which is
denoted as X/, is accompanied by a measure of uncertainty, and expressed using the Mean Square Error
(MSE). The H-step ahead forecast is obtained using Equation 4:

MSE|y;(H)| = TH3 Yk _1(6:0;e,)? (4)Where e; presents the ith column of I, and 6j = ¢jP,
with P being the lower triangular matrix. The value of P is calculated following Pesaran and Shin (1998) and is
utilized to estimate the variance-covariance matrix of Yu = E(u,u’) in the generalized decomposition.
Additionally, ¢ = JB/f, where ] = |I, 0,....0].

Z?gll(éiejek)z

5
MSE|y;:(H)| ©

YikH =

Then the measure of connectedness is obtained through equation 6

Dy = =X 1 vf (andi #)) (6)
3.2.2
BK introduced an innovative approach for assessing connectedness, emerging from diverse frequency reactions
to shocks within a system. This approach is grounded in the spectral analysis of variance decompositions. By
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incorporating frequency dynamics into the assessment of connectedness, their study further explores the
influence of cross-sectional correlations on connectedness. It is important to note that a high level of
simultaneous correlation does not automatically imply connectedness in how it is conventionally understood
in the field. Our objective is to identify the frequency at which spillover peaks occur, aiding policymakers in
deciding which frequency should be given precedence.

Spectral decomposition of variance and indices of interconnectedness measurements.

The BK method breaks down the original DY spillover across various frequencies. Specifically, their method
hinges on a spectral approach to variance decomposition. The spectral representation focuses on the frequency
response to shocks rather than relying on the impulse response function, which offers several advantages. This
approach enhances the clarity of cyclical data analysis, enables detailed decomposition of variability, and
adeptly captures heterogeneous temporal responses. Additionally, it offers crucial insights for policymakers
and is robust against model uncertainties, providing a sophisticated tool for assessing system dynamics and
resilience across time scales. We start considering the below impulse response function.

P(e7) = Tye O, (7

Equation 7 is estimated as a Fourier transform of the coefficients @, with i = v—1. The spectral density of x, at
frequency ®, can then be conveniently defined as a Fourier transform of MA () filtered series as

[oe]

Se@) = DT E(XX e = b(eT)b(et) ®)

k=—00

The spectrum of generalized causality across the frequency domain, where ® spans the interval (11, 1), is given
by:

o |(@(e™*)2)j, k|
@ (e — iw)XP'(eiw));

(f @)y = €)

Where & (e™*) = Y, e” 'k ¢k is the Fourier transform of the impulse response ®k. The measure (f (w)) me
the proportion of the influence of the k-th variable on the spectral density of the j-th variable at frequency .
This term reflects intra-frequency causality, given that the denominator encompasses the spectral density of the
jthvariable at the specific frequency w. To disentangle the variance contributions across the frequency spectrum,
the measure can be weighted by the relative variance of the jth variable at the respective frequency. The
corresponding weighting function is outlined as.

(2(e)5'(e)) ).
— " (@(e=)3"(e))],j dA’

rj(w) = (10)

Equation 10 delineates the spectral power of the jth variable at a specific frequency, integrating across the
frequency spectrum to yield a consistent value of 2m. It is important to recognize that the Fourier transform of
the impulse response typically yields a complex value. However, the spectrum of generalized causation is
derived from the squared magnitude of these weighted complex numbers, resulting in a real-valued metric.
The ensuing theorem articulates the spectral decomposition of the variance contribution from the j-th to the k-
th variable, forming the cornerstone of our connectedness metrics within the frequency domain. It is crucial to
understand how the variance decomposition and volatilities in the frequency domain from j to k interact with
each other to measure connectedness in the spectral domain. The frequency band is rigorously defined within
the interval d = (a, b) where a, b (1, m) and a < b. Within this specified band, Equation 10 provides the
generalized variance decomposition as follows:

1
(0a)je = Efdl}(w)(f(w))j_kdw an
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Then we have defined the generalized variance decomposition on the defined frequency band used in Equation
11 as

@Dk = O ). Oy, (12)

Where 0d and 6« are defined by Equation (11). The frequency connectedness on the frequency band d is then
defined as

cr = <w B Tr(Gd)) _ C}{V.Z od ‘ (13)
Y0, Tr(6e) 50,

Where Tr(.) is operator, and . 8, signifies the sum of all elements of the 8d matrix.

Figure 1 illustrates the procedure employed in the empirical work, which aligns with that of Rao et al. (2023).

Before proceeding to spillover, a stationary test is conducted using the ADF, KPSS, and PP tests to prevent

inconsistent and biased results from DY and BK models. The results of the unit root test are shown in the

supplementary material.

3.2.3 Frequency domain causality test

For the robustness of the empirical outcomes obtained from DY and BK spillovers, this study also utilizes the
frequency domain causality test (FDC) proposed by Croux and Reusens (2013) following the outline proposed
by [48]. Prior to investigating FDC, we applied the Hodrick-Prescott filter to all the series, using the canonical
value of A = 1600 to eliminate any trend and isolate the cyclical components. The outcomes are illustrated in the
supplementary documents, from Figure B.1 to B.2, for the PCR, TCR, and GEPU models. Our lag selection
procedure chooses one lag for the PCR and TCR models and three for the GEPU model. We opted for the
Bayesian Information Criterion (BIC) for lag selection, as it provides a more accurate estimate of the unknown
number of delays compared to the Akaike Information Criterion (AIC), which tends to overestimate it [49]. The
outcomes of VAR with the selected lags are shown in Table C.2 for all three models. Finally, we utilize the FDC
test proposed by Croux and Reusens (2013) based on Breitung and Candelon (2006) for the robustness of our
empirical results obtained from DY and BK[50].

4. Empirical results and discussion

4.1 Diagnostic test results

Table 2 presents the descriptive statistics for the monthly variables of the energy market's PCR, TCR, and GEPU
models. For the PCR and TCR models, the lowest mean value for monthly energy price change is reported for
NG, with a mean value of 0.007, while the highest change is noted for USLD (0.377), followed by COAL (0.188).
Simultaneously, the percentage change in physical climate risk (PCR) is approximately 105.26% higher than in
transitional climate risk (TCR). Conversely, TCR shows higher volatility in monthly changes (57.36%) than PCR.
NG exhibits the highest volatility in monthly price changes within the energy market, followed by COAL, with
standard deviations of 14.950 and 7.131, respectively. The kurtosis value for all energy prices is more significant
than two, indicating a certain level of data peaked ness. On another note, COAL is reported with a minimum
value of -160.330 in the GEPU model, whereas BRENT has the highest minimum value of -26.792. All kurtosis
values in the GEPU model are greater than three, suggesting that the change in monthly energy prices has
heavier tails.

Table 2: Descriptive Statistics

Var Mean Max Min Std.Dev Skew Kurt N
Model-1&2: PCR, TCR and Energy Prices

PCR 0.156 25.636 -32.439 7.822 -0.479 2.971 238
COAL 0.188 43.402 -45.132 7.131 0.12 13.524 238
ULSD 0.377 55.987 -54.573 14.95 -0.131 2.491 238
BRENT 0.156 13.829 -26.792 5.513 -1.222 3.406 238
WTI 0.124 13.522 -28.16 5.439 -1.205 3.907 238
NG 0.007 2.46 -3 0.576 -0.786 7.866 238
TCR 0.076 49.311 -31.177 12.309 0.424 1.786 238

Model-3: GEPU and Energy Prices
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GEPU 0.531 131.382 -93.199 28.044 0.643 3.97 320
COAL 0.416 83.776 -160.33 15.826 -2.544 39.634 320
ULSD 0.599 92.867 -54.573 15.995 0.448 5.159 320
BRENT 0.216 18.173 -26.792 5.468 -1.062 3.484 320
WTI 0.2 16.791 -28.16 5.485 -1.008 3.541 320
NG 0.026 18.831 -34.372 3.187 -3.032 53.57 320

Note: For the PCR (Physical Climate Risk), TCR (Transitional Climate Risk), and GEPU (Global Economic Policy
Uncertainty) models, COAL, ULSD, BRENT, WTI, and NG represent the monthly fluctuations in their
respective prices.

Model-1 PCR & Energy Prices

Model-2 TCR & Energy Prices Model-3 GEPU & Energy Prices

CoAL uLsD BRENT

CoAL uLsD BRENT CoAL

Figure 2: Cluster Heatmaps of Models 1, 2, and 3

Figure 2 presents the pairwise correlation heatmap for monthly PCR, TCR, and GEPU models. The heatmap
illustrates that PCR and TCR have a negative correlation with all energy prices. Notably, the West Texas
Intermediate (WTI) exhibits a more pronounced correlation with PCR and TCR than other monthly energy price
changes. Meanwhile, the GEPU model exhibits a positive correlation with NG and ULSD, but a negative
correlation with COAL and BRENT.

Table 3 is organized into three sections: Section A presents the results of normality tests, Section B details
nonlinear tests for normality, and Section C contains the results for multivariate normality tests, each applied
to the PCR, TCR, and GEPU models, respectively. The Bartels test, Robust Jarque-Bera (R]B) test, and Shapiro-
Johnson (S]) test consistently show statistical significance, marked by asterisks denoting significance levels of
1% (***). Based on the test results, we accept the alternative hypothesis of a normal distribution for PCR, TCR,
COAL, ULSD, BRENT, and WTI, suggesting that these time series do not follow a normal distribution. However,
the Bootstrap Symmetry test, Difference Sign test, Mann-Kendall (MK) test, and Runs test for PCR and WTI do
not show such levels of significance across all tests, implying a mixed outcome regarding the normality of these
series. For Model-3 (GEPU and Energy Prices), the GEPU variable and its relations with energy prices reveal
statistically significant deviations from normality in several tests, notably in the RJB and SJ tests at the 1% level.
In summary, the preponderance of statistically significant results in the normality tests suggests a departure
from the normal distribution for the PCR, TCR, and GEPU models concerning energy prices. Provide
foundational support for further exploring asymmetric spillovers in the energy market, as DY and BK's
framework posited. This evidence of non-normality is crucial, as it suggests the potential for nonlinear
dynamics and asymmetrical relationships in the impact of climate risks and policy uncertainty on energy
markets, reinforcing the relevance of employing models that capture these complexities.

Section B of Table 3 reveals the outcomes from nonlinearity tests for normality, with most variables within the
PCR, TCR, and GEPU models demonstrating statistically significant deviations from normality, particularly in
the Ter"asvirta, White, and Tsay tests. This further suggests the presence of nonlinear behaviour in the data,
aligning with conventional advanced studies investigating complex dynamics in financial markets. These
findings underscore the necessity of considering nonlinearity when analyzing the influences of climate risks
and economic policy uncertainty, a concept BK and DY’s research on asymmetric spillovers has brought to the
forefront of energy economics. Finally, Section C of Table 3 indicates the results of multivariate normality tests
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for the PCR, TCR, and GEPU models. The Energy Test yields highly significant E-statistics for all three models
(PCR: 9.3667, TCR: 8.222, GEPU: 29.831) with p-values less than 2.2e-16, implying a solid rejection of the null
hypothesis of multivariate normal distribution. This suggests that the variables within each model are
collectively non-normally distributed. Additionally, the Mardia Kurtosis test results for skewness and kurtosis
across the models further validate this finding, with p-values indicating significance at the 1% level. As
highlighted in advanced econometric research, these results reinforce the importance of using methods that
capture the non-normal distribution and potential asymmetric relationships within the energy market. Based
on the results above indicating non-normality, we have sufficient statistical justification for selecting a Vector
Autoregression (VAR) model for our spillover analysis.

Table 3: Diagnostic Tests

Var Bartels Test RJB Test SJ Test Boot Difference = MK Test Runs Test
Symmetry Sign Test
Test
PCR 5.501*** 220.501*** 8.893*** -0.369 3.697*** 0.358 3.897***
COAL  -5.380*** 12655.344 23.044**  0.441 -0.227 -1.377 -4.157***
ULSD  3.950*** 197.135%** 10.172%**  -0.612 0.784 0.055** 3.378%**
BRENT -3.003*** 301.057*** 7.263%** -3.062%+* 1.456 -0.251 -1.169
WTI -2.130%** 407.122%** 8.516 -3.197*** 0.112 -0.207 -0.390
NG -2.694*** 12063.580***  31.180***  0.395 0.851 -2.642%+* -3.923***
TCR 5.156*** 57.170*** 4.969*** 1.669 1.456 -0.215 3.508***
Model-3 GEPU and Energy Prices
GEPU  2.897*** 645.922*** 12.888***  1.913 2.417%+* -0.152 2.464
COAL  -6.304*** 1736495.000  63.091 1.208 0.199 1.371 -5.296***
ULSD  4.986*** 1293.491*** 16.037***  0.406 1.450 0.739 3.807*
BRENT -3.676*** 395.969*** 8.742%* -2.650*** 1.450 1.186 -1.680*
WTI -2.926*** 445.091*** 9.776*** -2.851*+* -0.290 1.177 -0.784
NG -3.236*** 52699120.000 118.756*** 0.541 1.674* -0.705 -4.285%**
Section B: Nonlinearity test for normality
Model-1 Model-2

Teraesvirta White NN Keenan Tsay Test  Teraesvirta =~ White NN Keenan Tsay

NN Test Test Test NN Test Test Test Test
PCR 27.202%** 34.683*** 6.215%** 3.245*+*
TCR 3.929 8.384*** 0.382 1.614***
COAL  11.394*** 14.692*** 8.401*** 4.038*** 11.394%** 14.692*** 8.401***  4.038***
ULSD  9.638*** 8.425%** 0.041 2.279%* 9.638*** 8.425%** 0.041 2.279%**
BRENT 10.757*** 10.981*** 6.730*** 9.594*** 10.757*** 10.981*** 6.730***  9.594***
WTI 11.109%** 16.316*** 7.564*** 10.19*** 11.109*** 16.316*** 7.564***  10.19***
NG 12.385%** 10.329*** 4.481* 4.447%* 12.385%** 10.329%** 4.481*  4.441%**
Model- Section C: Multivariate Normality Test of Model-
3 1
GEPU  6.887** 4.283 1.541 NaN Energy Test=29.831***
COAL  5.0667** 3.42 57.343***  14.45*** Mardia Kurtosis Test
ULSD  3.76 4.586 0.393 2.36*** Beta hat Kappa P

values

BRENT 10.905*** 7.744** 7.232%** 10.88*** Skewness 10.202 404.684  0.000
WTI 11.370%*** 11.782%** 6.987*** 10.31*** Kurtosis 92.533 35.059  0.000
NG 44.161*** 23.540***39.937*** 105**+*

Section C: Multivariate Normality test Of Model 2 & 3

Model-2 Model-3
Energy Test 8.222%%* Energy
Test=29.831***
Mardia Kurtosis Test B B
Kappa P Values Kappa P values
Skewness 10.254 406.73882  0.000 30.3494 1618.637 0.000
Kurtosis 92.898 35.467 0.000 190.321 129.921 0.000

Note: Note: ***, **, and * indicate level significance at the 0.01, 0.05, and 0.1.
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Section A: Normality Tests: (Model-1 & 2) PCR, TCR and Energy Prices

4.2 DY spillover results

The results of the Diebold and Yilmaz (2014) Spillover analysis, grounded on a Vector Autoregression (VAR)
model with a maximum lag of two and a constant term, are exhibited in Table 4. This analysis summarizes our
models, integrating physical and transitional climate risks and global economic policy uncertainty. It examines
their monthly impact on the prices of five key indicators in the energy market (NG, COAL, WTI, BRENT, and
ULSD). The values in each row measure how much other variables affect the predictability of a particular
energy sector’s future value changes. In contrast, the column values focus on the impact of a single variable on
the forecast of error of another. PCR contributes to a modest but notable portion of the variance in other energy
commodities. It accounts for 0.29% of COAL returns, 2.55% of ULSD, 1.53% of BRENT, 0.56% of WTI, and 0.44%
of NG. This influence spread underscores PCR’s relative importance in the energy market dynamics, albeit
overshadowed by other larger contributors. In the broader context, PCR’s impact on NG (0.44%) is particularly
significant. This could reflect the sensitivity of natural gas consumption to climate risk factors, potentially
influenced by consumer demand for heating or cooling due to fluctuating temperatures. The COAL market,
with a spillover contribution of 0.84% to NG, may indicate the interplay between traditional energy sources,
possibly reflecting shifts in energy usage patterns or substitution effects in response to climate policy and
market changes.

In Model 2, the TCR spillover matrix for the energy market, diagonal elements (like 95.57 for TCR and 65.66 for
COAL) indicate the self-connectedness of each variable, reflecting their contribution to their forecast error
variance. Off-diagonal elements represent the spillover effect between different variables. The concertedness
from TCR to the energy market is stronger with COAL (3.02%) and 2.44% from ULSD to TCR. In models one
and two, the contribution of PCR and TCR is highest for BRENT (0.74%) and NG (1.53%) among all other
variables, respectively. At the same time, the contribution from the energy market to PCR and TCR is highest
from BRENT (1.53%) and USLD (2.44).

In the GEPU model, NG is reported to have the highest self-connectedness, and BRENT has the lowest prices
within the energy market. Interestingly, GEPU contributes equally to COAL and BRENT with a 2.07%
contribution to their dependence and the highest observed pair-wise connectedness from GEPU to the energy
market. This confirms that COAL and BRENT are integral to the global energy mix, sensitive to policy changes,
and vital to industrial activities and power generation, making them susceptible to changes in economic policies
and global market sentiments. Conversely, the row sum of pairwise connectedness is highest for BRENT,
followed by WTIL, which measures the received share of volatility from others. The total directional
connectedness in the FROM column ranges between 2.16% to 9.96%. The share of directional volatility from the
energy market to GEPU is highest for BERNT, followed by COAL.

Figures 3, 4 and 5 show the overall connectedness of PCR. TCR and GEPU models, respectively. The magnitude
of overall connectedness and time are labelled on the Y and X axes. The circle's diameter shows the magnitude
of the connectedness of the variable in the model. We observe that the overall connectedness in all three models
increases with time. The TCR model has the lowest connectedness, while the GEPU model exhibits maximum
connectedness with a magnitude of 17.89% and 28.43% in one month. In the climate risk framework, the PCR
model shows relatively higher connectedness than the TCR model in one moth. From 1-3 months to 6 months
and beyond, the overall connectedness of the GEPU model remains relatively higher than other models, with
magnitude values of 31.91%, 48.65%, and 53.87%. The period transitional climate risk model shows higher
overall connectedness than physical climate risk. Additionally, the increasing overall cone

cuteness in both PCR and TCR models is aligned with the empirical result of [51].

Table 4: DY Spillover

Model-1 PCR
Var PCR COAL ULSD BRENT WTI NG FROM
PCR 94.63 0.29 2.55 1.53 0.56 0.44 0.9
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COAL 0.33 66.27 4.88 15.33 12.36 0.84 5.62
ULSD 0.60 3.74 51 2243 20.7 1.54 8.17
BRENT 0.74 5.99 15.44 40.72 352 1.91 9.88
WTI 0.33 5.05 13.57 36.85 41.69 2.51 9.72
NG 0.25 5.5 1.03 0.8 1.05 91.37 1.44
TO 0.37 3.43 6.24 12.82 11.65 1.21 35.72
Model-2 TCR

TCR COAL ULSD BRENT WTI NG FROM
TCR 95.57 0.78 2.44 0.4 0.45 0.36 0.74
COAL 3.02 65.66 434 14.58 11.72 0.68 5.72
ULSD 0.28 3.58 50.88 22.77 21.02 1.46 8.19
BRENT 0.88 5.7 15.26 40.95 35.26 1.93 9.84
WTI 0.82 4.76 13.33 36.78 41.68 2.63 9.72
NG 1.53 5.39 1 0.88 1.27 89.93 1.68
TO 1.09 3.37 6.06 12.57 11.62 1.18 35.89
Model-3 GEPU

GEPU COAL ULSD BRENT WTI NG FROM
GEPU 87.06 3.65 0.55 4.28 3.49 0.97 2.16
COAL 2.07 59.01 9.69 10.16 8.66 10.41 6.83
ULSD 0.93 6.16 51.33 21.72 19.63 0.23 8.11
BRENT 2.07 5.3 16.44 40.25 35.58 0.35 9.96
WTI 1.81 4.64 14.97 37.25 41.05 0.29 9.83
NG 0.62 11.04 3.43 1.89 2.14 80.87 3.19
TO 1.25 5.13 7.51 12.55 11.58 2.04 40.07

Note: For PCR (physical climate risk), TCR (transitional climate risk), and GEPU (Global Economic Policy
Uncertainty) models: COAL, ULSD, BRENT, WTI, and NG represent the monthly fluctuations in their
respective prices.
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Figure 2: Physical climate risk and energy prices Overall connectedness

4.3 Barun’ik and K'rehlik Spillover result

Tables 5, 6, and 7 depict the comprehensive connectedness among the PCR, TCR, and GEPU models across four
distinct time horizons. Table 5 explicitly presents the frequency spillover between PCR and five principal
energy commodities, utilizing the methodology developed by [52],[53].The spillover effects between physical
climate risk and the energy market are detailed for the following durations: 1 Month, 1-3 Months, 3- 6 Months,
and 6 Months and beyond. Initially, at the 1-Month horizon, the spillover impact from PCR to the energy market
is markedly minimal, indicating that PCR contributes insignificantly to the price fluctuations of the energy
commodities under examination[54]. Compared to the 1-Month horizon, the spillover effects of PCR on the
energy market increase over the 1-3 Month period. BRENT experiences the most substantial impact, followed
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by ULSD, with contributions of 0.24% and 0.23%, respectively, within this timeframe[55]. Over the 1-3 Month
period, the spillover from the energy market to PCR is more pronounced than in the 1 Month, with ULSD
contributing 2.37% to PCR. During this period, the self-connectedness of PCR and NG notably increases, while
other energy commodities show a marked decrease in self-connectedness compared to the preceding time
horizon. In the 3-6-month timeframe, the spillover effects from PCR to COAL, ULSD, BRENT, WTI, and NG
are 0.07%, 0.14%, 0.19%, 0.08%, and 0.02%, respectively. Notably, the spillover from PCR to COAL remains
constant, while there is a significant decrease in its impact on other energy prices compared to the 1-3-month
period. Progressing to the six-month and beyond horizon, the spillover impact of PCR on NG stays stable,
whereas it increases substantially for the other energy commodities. In summary, the spillover effects of PCR
on the price movements of various energy commodities demonstrate a varied pattern across different
periods[56],[57]. However, overall, there is an increase in the cumulative spillover effect, as indicated by the
rising sum in the “FROM” column, from 18.62% to 51.35%.
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Figure 3: Overall connectedness of transitional climate risk and energy prices

In contrast, Table 6 reveals that the spillover effect of transitional climate risk (TCR) on the prices of five energy
commodities is relatively higher for one month than the PCR model, with a specific impact on BRENT of 0.02%.
TCR's higher initial spillover impact compared to PCR is likely due to the more immediate and direct influence
of policy decisions, regulatory changes, and technological innovations intrinsic to transitional climate strategies.
For instance, a new policy promoting renewable energy or imposing carbon taxes can quickly alter energy
prices, reflecting the market’s swift response to regulatory changes. Over the 1-3-month period, TCR’s spillover
to COAL is 2.03%, to ULSD is 0.22%, to BRENT is 0.72%, to WTI is 0.59%, and to NG is 0.88%. Natural Gas
exhibits the highest self-connectedness during this timeframe, while BRENT shows the lowest among the
energy commodities.

Moreover, the spillover from TCR to all energy commodities significantly decreases in the 3-6 month period
relative to the 1-3 month period, with coal experiencing the highest spillover from TCR. In the 6-month and
beyond timeframe, the spillover impact from TCR to COAL is 0.55%, to NG is 0.47%, and to WTI is 0.14%.
Notably, the spillover from TCR to COAL shows a considerable increase from 0.01% in the one-month period
t0 2.03% in the 1-3 month period. Compared to other energy commodities, the significant and sustained increase
in spillover from TCR to COAL across all time frames likely reflects coal’s heightened sensitivity to transitional
climate policies, which often target carbon-intensive sectors for early and substantial reductions in emissions.
It underscores the need for targeted strategies in the coal sector to manage the impacts of transitional climate
policies and adapt to the shifting energy landscape. Table 7 shows the BK spillover effects from global economic
policy uncertainty on essential energy commodities, including COAL, ULSD, BRENT, WTIL, and NG. In the
initial 1-month period, the minimal impact suggests that energy markets may take time to react to policy
changes or global economic uncertainties. However, as the timeframe extends to 1-3 Months, the observed
increase in GEPU’s influence, particularly on COAL, is 1.83%, NG is 0.5%, ULSD is 0.57%, BRENT is 0.84%, and
WTlL is 0.67%. This could be due to the market’s gradual adjustment of policy changes and the adjustments in
supply and demand dynamics. In the 3-6 Month and beyond horizons, the pronounced spillover effects,
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especially on BRENT, are 0.47%, and on WTI are 0.41%, likely reflecting the cumulative and lagged responses
of the energy sector to ongoing global economic shifts. This delayed reaction could be linked to the time
required for policy decisions to permeate the energy sector, affecting operational strategies, investment
decisions, and consumer behavior. The analysis indicates that the energy market’s responsiveness to GEPU
varies over time, aligning with the evolving nature of policy impacts and market adjustments. The spillover
from GEPU to all under study energy prices is observed to be relatively higher in the short run than in climate
risk models 1 and 2. Additionally, Table 7 reveals an increase in the self-connectedness of GEPU and NG, from
2.4% and 0.43% in the 1-month timeframe to 68.8% and 62.23% in the 1-3 months period, respectively.
Subsequently, there is a decline to 7.77% and 7.41% in the 6 months and beyond time frame.
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Figure 5: Global economic policy uncertainty and energy prices overall connectedness

Table 8, comparative analysis across four time periods (1 Month, 1-3 Months, 3-6 Months, and 6 Months and
Beyond) for the GEPU, PCR, and TCR models reveals distinct spillover impacts on five essential energy
commodities. The table effectively summarizes the short-run, medium-term, and long-run spillover effects of
GEPU, PCR, and TCR across various energy market prices. In the initial month, the spillover effect of GEPU is
predominantly greater than both PCR and TCR for COAL and ULSD, indicating an immediate and significant
influence of global economic policy uncertainty in these markets. In contrast, TCR shows a greater spillover
than PCR in all commodities except ULSD. Over the 1-3 months, the impact of GEPU relative to PCR and TCR
diminishes for COAL but remains strong for ULSD, BRENT, and WTI. The spillover of TCR surpasses PCR in
COAL, NG, and ULSD (1-3 Months) and in NG (3-6 Months), suggesting a more pronounced transitional
climate risk impact on these commodities in the medium term. In the long term (6 months and beyond), GEPU
continues to exert a greater influence on BRENT and WTI than PCR and TCR. At the same time, TCR exhibits
a greater spillover effect than PCR in NG, underscoring the enduring impact of transitional climate risks on the
natural gas market.

Table 5: BK spillover for Model 1-PCR.

1 Month

Var PCR COAL ULSD BRENT WTI NG FROM_ABS FROM_WTH
PCR 2.84 0.03 0.17 0.01 0.00 0.04 0.04 2.77
COAL 0.00 0.91 0.01 0.06 0.03 0.02 0.02 1.29
ULSD 0.00 0.08 1.49 0.08 0.04 0.05 0.04 2.68
BRENT 0.00 0.06 0.09 0.37 0.32 0.01 0.08 5.36
WTI 0.00 0.06 0.11 0.39 047 0.00 0.09 6.23
NG 0.00 0.02 0.01 0.00 0.00 1.28 0.00 0.29
TO_ABS 0.00 0.04 0.06 0.09 0.07 0.02 0.28

TO WTH 0.13 2.65 4.20 5.96 4.40 1.28 18.62
1 to 3 Month
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PCR 80.77 0.21 2.37 1.46 0.53 0.39 0.83 1.59
COAL 0.07 32.74 0.72 2.80 1.90 0.50 1.00 1.92
ULSD 0.23 1.07 36.39 8.92 8.38 0.80 3.24 6.22
BRENT 0.24 1.75 6.32 17.28 14.70 0.65 3.94 7.58
WTI 0.06 1.24 5155 14.81 17.71 0.48 3.69 7.09
NG 0.21 0.42 0.51 0.03 0.18 49.70 0.23 0.43
TO_ABS 0.13 0.78 2.58 4.67 4.28 0.47 12.92

TO_WTH  0.26 1.50 4.96 8.98 8.23 0.90 24.83
3 to 6 Month

PCR 6.07 0.02 0.01 0.03 0.01 0.01 0.01 0.08
COAL 0.07 12.15 1.24 3.57 2.96 0.19 1.34 7.64
ULSD 0.14 0.85 5.38 4.86 4.49 0.21 1.76 10.03
BRENT 0.19 1.40 3.51 8.73 7.61 0.44 2.19 12.50
WTI 0.08 1.22 2.84 7.57 8.49 0.65 2.06 11.77
NG 0.02 1.26 0.10 0.16 0.29 18.33 0.30 1.74
TO_ABS- 0.08 0.79 1.28 2.70 2.56 0.25 7.67

TO_WTH 046 4.51 7.33 15.41 14.60 1.42 43.75
6 Month & Beyond

PCR 494 0.04 0.00 0.02 0.02 0.00 0.01 0.05
COAL 0.18 20.46 291 8.90 7.47 0.13 3.27 11.28
ULSD 0.23 1.73 7.74 8.56 7.80 0.48 3.13 10.83
BRENT 0.32 2.79 5.51 14.34 12.57 0.82 3.67 12.66
WTI 0.19 2.53 5.07 14.07 15.02 1.38 3.87 13.38
NG 0.02 3.81 0.41 0.61 0.58 22.06 0.90 3.12
TO_ABS 0.15 1.82 2.32 5.36 4.74 0.47 14.86

TO_WTH  0.53 6.27 8.01 18.52 16.37 1.62 51.32

Note: For PCR (Physical Climate Risk), TCR (transitional climate risk), and GEPU (Global Economic Policy
Uncertainty) models: COAL, ULSD, BRENT, WTI, and NG represent the monthly fluctuations in their
respective prices.

In Figures 6, 7, and 8 of the network diagrams, we can observe spillover effects from PCR, TCR, and GEPU onto
five key energy market variables across different time frames. These time frames include 3.14 (1 month), 3.14 to
1.05(1-3 months), 1.05 to 0.52 (3-6 months), and 0.52 to 0 (6 months and beyond). Analyzing Figure 6, we
discover that within the frequency bands of 3.14 and 3.14 to 1.05, PCR significantly influences the monthly
changes in all five energy market prices. Specifically, ULSD experiences the highest spillover effect over one
month, followed by NG and COAL, while WTI registers the least spillover impact from physical climate risk.
This could be due to the vulnerability of these energy sources to physical climate risks such as extreme weather
events or supply chain disruptions. As Salisu et al. (2023) noted, climate change can escalate global crude oil
market uncertainties. In the 3.14 to 1.05 frequency band, ULSD continues to be the primary recipient of spillover
from PCR, with BRENT and WTI following in terms of influence. However, none of the energy prices exhibit
any significant changes or spillover effects in the remaining frequency bands. From Figure 7, it is evident that
TCR acts as the primary driver of monthly changes in ULSD across all frequency bands. This aligns with the
findings of Salisu et al. (2023), which indicated that TCR offers better predictive accuracy for energy market
volatility in out-of-sample forecasts compared to PCR.
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Figure 4: Spillover from PCR to energy market Figure 7: Spillover from TCR to energy market

Furthermore, Figure 8 illustrates the net impact of global economic policy uncertainty (GEPU) on COAL, NG,
WTI, BRENT, and ULSD, highlighting the swift influence of policy uncertainty on energy prices. In the initial
frequency band, GEPU solely affects the monthly COAL, NG, and BRENT changes. Notably, COAL
experienced the most significant spillover from GEPU, followed by BRENT, within the first month. As we move
into the medium-term 1-3 months, the maximum spillover shifts from COAL to BRENT. Moreover, the
influence extends to four energy prices, including WTI within the network. BRENT received more substantial
spillover effects during this time than NG, COAL, and WTI. In the longer term, specifically within the frequency
bands of 1.05 to 0.52 and 0.52 to 0.00, GEPU continues to transmit spillover effects to the changes in COAL, NG,
WTI, and BRENT. However, an interesting contrast is worth noting: ULSD no longer receives spillover from
GEPU in the long term, in contrast to its short-term behavior.

Overall, Figure 8 suggests that the impact of global economic policy uncertainty on energy market prices varies
across different energy commodities and time frames. Policy uncertainty seems to reasonably affect all energy
prices equally in the short run. In the medium term, liquid fuels (WTI, BRENT, ULSD) are more affected, while
in the long term, solid fuels (COAL) and gases (NG) seem to experience greater spillover effects. This could
indicate that market participants might be more concerned about policy changes affecting long-run contracts
and investments in these commodities.

Table 6: BK spillover for Model 3-TCR.

1 Month

Var TCR COAL ULSD BRENT WTI NG FROM_ABS FROM WTH
TCR 2.02 0.01 0 0 0.01 0.01 0 0.34
COAL 0.01 0.94 0.01 0.05 0.03 0.02 0.02 1.61
ULSD 0 0.07 1.49 0.06 0.03 0.04 0.03 2.45
BRENT 0.02 0.05 0.11 0.36 0.31 0.01 0.08 6.12
WTI 0.01 0.05 0.12 0.38 0.46 0 0.09 7.01
NG 0.01 0.01 0 0 0 1.26 0 0.35
TO_ABS 0.01 0.03 0.04 0.08 0.06 0.01 0.24

TO_ WTH 0.66 227 2.95 6.29 4.86 0.85 17.89
1 to 3 Month

TCR 85.44 0.61 2.25 0.27 0.27 0.34 0.62 1.19
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COAL 2.03 31.96 0.75 2.38 1.62 0.38 1.19 2.27
ULSD 0.22 0.94 36.35 9.15 8.6 0.69 3.27 6.21
BRENT 0.72 1.48 6.39 17.1 14.46 0.56 3.93 7.48
WTI 0.59 1.01 5.55 14.5 17.45 0.43 3.68 6.99
NG 0.88 0.42 0.63 0.11 0.33 48.85 0.39 0.75
TO_ABS 0.74 0.74 2.59 4.4 4.21 0.4 13.09

TO_WTH 141 1.41 4.93 8.37 8.01 0.76 24.88
3 to 6 Month

TCR 4.75 0.04 0.09 0.05 0.08 0 0.04 0.25
COAL 0.42 11.98 1.05 3.43 2.79 0.13 1.3 7.54
ULSD 0.01 0.83 5.43 491 4.49 0.22 1.74 10.1
BRENT 0.06 1.37 3.46 8.88 7.65 0.46 217 12.54
WTI 0.08 1.18 2.79 7.63 8.51 0.69 2.06 11.93
NG 0.17 1.24 0.08 0.21 0.37 18.13 0.34 1.99
TO_ABS 0.12 0.78 1.24 2.71 2.56 0.25 7.66

TO_WTH 0.72 45 7.2 15.66 14.83 1.45 44.36
6 Month & Beyond

TCR 3.36 0.11 0.1 0.07 0.1 0.01 0.07 0.23
COAL 0.55 20.78 2.53 8.71 7.28 0.15 3.21 11.14
ULSD 0.05 1.75 7.6 8.65 7.9 0.52 3.14 10.92
BRENT 0.09 2.81 5.31 14.62 12.84 0.91 3.66 12.71
WTI 0.14 2.52 4.88 14.27 15.26 1.5 3.88 13.5
NG 0.47 3.73 0.29 0.56 0.57 21.69 0.94 3.25
TO_ABS 0.22 1.82 2.19 5.38 4.78 0.52 14.89

TO_WTH 0.75 6.32 7.6 18.68 16.61 1.79 51.75

Note: For PCR (physical climate risk), TCR (Transitional Climate Risk), and GEPU (Global Economic Policy
Uncertainty) models: COAL, ULSD, BRENT, WTIL, and NG represent the monthly fluctuations in their
respective prices.
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Spillover from Global Economic Policy Uncertainty (1Month) Spillover from Global Economic Policy Uncertainty (3-6 Months)

Spillover from Global Economic Policy Uncertainty (1-3 Months) Spillover from Global Economic Policy Uncertainty (6 Months and beyond)
o © &

Figure 8: Spillover from GEPU to the energy market

Table 7: Model 3-GEPU BK Spillover

1 Month

Variables GEPU COAL ULSD BRENT WTI NG FROM ABS FROM WTH
GEPU 2.4 0.04 0 0.02 0 0.01 0.01 0.9
COAL 0.03 0.75 0.22 0.15 0.12 0 0.09 6.11
ULSD 0.03 0.2 1.82 0.25 0.18 0 0.11 7.72
BRENT 0.01 0.03 0.1 0.35 0.32 0.01 0.08 5.35
WTI 0.01 0.03 0.11 0.35 0.41 0 0.08 5.81
NG 0.01 0.16 0.01 0.02 0.02 0.43 0.04 2.52
TO ABS 0.02 0.08 0.08 0.13 0.1 0 0.41

TO WTH 1.06 5.31 5.23 9.24 7.31 0.27 28.43
1 to 3 Months

GEPU 68.8 3.13 0.39 2.99 2.19 0.85 1.59 2.79
COAL 1.83 30.28 2.82 3.46 2.92 7.34 3.06 5.37
ULSD 0.57 2.98 36.42 8.62 7.74 0.2 3.35 5.88
BRENT 0.84 2.47 6.66 17.35 15.33 0.34 4.27 7.49
WTI 0.67 2.14 5.81 15.33 17.91 0.24 4.03 7.06
NG 0.5 6.35 2.36 0.95 1.2 62.33 1.9 3.32
TO ABS 0.73 2.84 3.01 5.23 4.9 15 18.2

TO WTH 1.29 4.99 5.27 9.16 8.58 2.62 31.91
3 to 6 Months

GEPU 8.09 0.27 0.12 0.71 0.7 0.09 0.31 1.81
COAL 0.16 10.6 1.73 14 1.25 1.78 1.05 6.08
ULSD 0.14 1.23 5.32 4.89 451 0.02 1.8 10.38
BRENT 0.47 1.38 413 9.31 8.23 0.01 2.37 13.7
WTI 0.41 1.24 3.76 8.65 9.27 0.03 2.35 13.58
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NG 0.11 1.69 0.75 0.3 0.35 10.69 0.53 3.08
TO ABS 0.21 0.97 1.75 2.66 2.51 0.32 8.42

TO WTH 1.24 5.6 10.1 15.37 14.5 1.85 48.65
6 Months & Beyond

GEPU 7.77 0.21 0.04 0.57 0.59 0.02 0.24 0.98
COAL 0.05 17.39 491 515 437 1.29 2.63 11.14
ULSD 0.2 1.75 7.78 8.65 7.9 0.52 3.14 10.92
BRENT 0.75 1.43 5.55 14.62 11.7 0.91 3.24 12.71
WTI 0.72 1.23 5.29 12.92 13.45 0.02 3.36 13.89
NG 0.01 2.84 0.31 0.61 0.57 741 0.72 2.99
TO ABS 0.29 1.24 2.68 4.53 4.07 0.22 13.04

TO WTH 1.19 513 11.08 18.72 16.82 0.92 53.87

Note: For PCR (physical climate risk), TCR (transitional climate risk), and GEPU (Global Economic Policy
Uncertainty) models: COAL, ULSD, BRENT, WTIL, and NG represent the monthly fluctuations in their
respective prices.

Table 8: Comparative Analysis of BK Spillovers of Models 1 to 3

1 Month 1-3Months
COAL ULSD BRENT WTI NG COAL ULSD BRENT WTI NG
GEPU vs Climate Risk Yes Yes No No No No Yes Yes Yes No
TCR vs PCR Yes No Yes Yes Yes Yes No No No Yes
3-6 Months 6 Months and Beyond
GEPU vs Climate Risk No No Yes Yes No No No Yes Yes No
TCR vs PCR No No No No Yes No No No No Yes

Note: For all energy market prices, instances where GEPU’s spillover exceeds both PCR and TCR are marked
with “Yes.” Similarly, “Yes” also denotes cases where TCR’s spillover surpasses that of PCR. In all other
scenarios, the response is marked as “No” for both comparisons.

4.4 Frequency domain causality test

To enhance the robustness of our findings regarding DY and BK spillovers, we have conducted a sensitivity
analysis using the frequency domain causality (FDC) test. This analytical approach provides additional support
for our results. Figures 9, 10, and 11 display the outcomes of the FDC test corresponding to the PCR, TCR, and
GEPU models, respectively. In these visual representations, the black dotted line denotes the 5% significance
threshold, while the red dashed line represents the incremental R-squared values. The X-axis is labeled with
frequencies, and the Y-axis displays the incremental R-squared values. The incremental R-squared measures
the disparity between the R-squared (R2) derived from an unrestricted model and the R-squared (R2) derived
from a model estimated under specific constraints. This incremental R-squared value quantifies the degree of
Granger causality from PCR, TCR, and GEPU to energy prices at a given frequency .

In Figure 9, the red dashed line represents the incremental R-square value of PCR compared to the critical value
at a 5% significance level. In all five cases, the incremental R-squared equals the critical value, rather than being
greater or lesser. Consequently, we cannot reject the null hypothesis of Granger causality from PCR to energy
prices. Therefore, we can conclude that PCR plays a significant role in predicting the future values of COAL,
ULSD, BRENT, WTI, and NG.
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Figure 9: Frequency domain causality from PCR to energy prices

In Figure 10, we plotted the FDC outcomes for TCR to the energy market. This also confirmed that TCR
significantly contributes to predicting future values of five key energy prices. These results are in line with (Rao
etal.,, 2023). However, at the lowest frequency, we failed to accept the null hypothesis of Granger causality from
TCR to energy prices.
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Figure 10: Frequency domain causality from TCR to energy prices

Figure 11 illustrates the frequency domain causality outcomes between global economic policy uncertainty and
energy prices. The outcomes confirmed that GEPU makes a significant contribution to predicting the future
price of the energy market. To sum up, the casual association from PCR, TCR, and GEPU to COAL, ULSD,
BRENT, WTI, and NG is not prominent at the lower and upper-frequency limits. In most cases, the strength of
causality remains constant throughout the significant range.
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Figure 11: Frequency domain causality from GEPU to energy prices

5. Conclusion and policy recommendation

The energy market faces unprecedented and unpredictable price fluctuations, driven by a complex mix of
changing global climate patterns, rapid industrialization, policy uncertainties, and economic growth. These
dynamics present significant challenges for investors, particularly in making decisions about future
investments. As a result, the associated risks —namely, physical climate risks (PCR) and transitional climate
risks (TCR) —have drawn the attention of researchers aiming to support potential investors in navigating these
uncertainties.This study set out to explore the intricate relationships between transitional climate risk (TCR),
physical climate risk (PCR), global economic policy uncertainty (GEPU), and the prices of key energy
commodities, including COAL, ULSD, BRENT, WTI, and NG. By analyzing asymmetric spillover
connectedness and utilizing frequency domain causality, we offer empirical insights into energy price
fluctuations. Specifically, we examined the overall connectedness and spillover effects using two datasets: one
for monthly climate risks and another for global economic policy uncertainty.

Our results, based on DY and BK methodologies, reveal an increasing pattern of overall connectedness over
time for PCR, TCR, and GEPU. Among these, GEPU exhibited the highest connectedness for periods of six
months and beyond, followed by TCR and PCR, with connectedness magnitudes of 53.87%, 51.75%, and 51.32%,
respectively. Notably, TCR maintained higher connectedness than PCR across all time frames except for the
one-month period, where TCR showed a lower connectedness of 17.89%. These findings have crucial
implications for shaping policies related to both physical and transitional climate risks, as well as addressing
uncertainties arising from economic policies. These policies are particularly important as they aim to achieve
the dual goals of fostering economic growth while reducing greenhouse gas emissions. Moreover, investors are
especially concerned about policy changes, as they impact not only present but also future earnings. This
concern is reflected in our findings, where TCR shows greater overall connectedness with energy price volatility
compared to PCR.

Our analysis of transmission dynamics further highlights the varying effects of TCR, PCR, and GEPU on energy
prices across different time frames. In the short term (1 month and 1-3 months), PCR acts as a net transmitter to
all five energy prices, while TCR’s transmissions are limited, affecting only ULSD. On the other hand, GEPU
demonstrates a more varied transmission pattern: for one month, it is a net transmitter for COAL, NG, and
BRENT,; for 1-3 months, it transmits to WTI, BRENT, NG, and COAL; and for 3-6 months, it is a net transmitter
to COAL, WTI, and BRENT. Beyond six months, GEPU’s transmissions diminish, particularly for WTL, BRENT,
and ULSD.Given these varied transmission dynamics, policymakers should prioritize diversification of energy
sources. In the short term (1-3 months), policy efforts should focus on addressing PCR’s net transmission to all
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energy prices. For longer time frames (3-6 months and beyond), attention should shift to managing risk factors
that disproportionately impact specific energy prices. For example, stabilizing the prices of COAL, WTI, and
BRENT could ensure long-term energy price stability. Additionally, developing more robust risk assessment
and forecasting tools will allow for proactive policy adjustments to minimize economic disruptions.
Furthermore, our analysis extends to the causal relationships between PCR, TCR, GEPU, and energy prices.
Understanding these causal interconnections will empower stakeholders in the energy markets for coal, ULSD,
Brent, WTI, and natural gas to devise proactive strategies for managing risks associated with economic and
climate policies.

5.1 Limitations and Future Research Directions

While this study provides valuable insights, it is not without limitations. First, the analysis is constrained to a
limited set of energy commodities, and future research could expand the scope to include a broader range of
energy markets. Second, the frequency domain causality approach, though effective, may not capture all
complexities of dynamic interactions over shorter time frames. Future studies could explore alternative
methodologies, such as machine learning techniques, for more granular analysis. Lastly, this research focuses
on the global perspective; country-specific studies could offer additional insights into how regional policies and
risks affect energy prices differently.

By addressing these limitations, future research can further enhance our understanding of the intricate
relationships between climate risks, economic policy uncertainty, and energy markets, ultimately leading to
more effective policy interventions and investment strategies.
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