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Abstract: The integration of artificial intelligence (AI) and machine learning (ML) into food microbiology
offers transformative potential for enhancing food safety through rapid pathogen detection. Traditional
microbiological methods, while reliable, are time-consuming and ill-suited for analyzing complex, high-
dimensional datasets. This systematic review synthesizes contemporary evidence on AI/ML applications in
food microbiology, specifically evaluating their performance in microbial detection, contamination
prediction, and spoilage assessment, while identifying barriers to real-world implementation. Following
PRISMA 2020 guidelines, we systematically searched PubMed, Scopus, Web of Science, and IEEE Xplore for
studies published between January 2017 and December 2023. Data were extracted on model types,
performance metrics (accuracy, Fl-score, AUC-ROC), and validation approaches. From 1,153 records
screened, 22 studies met the inclusion criteria. Supervised learning dominated (91% of studies), with Random
Forest (n=9), Convolutional Neural Networks (CNNs; n=6), and Support Vector Machines (n=5) being most
prevalent. Applications focused on: (1) rapid pathogen detection from hyperspectral/multispectral imaging
(accuracy: 89-96%; AUC: 0.88-0.95); (2) prediction of microbial growth kinetics under varying storage
conditions (RMSE: 0.15-0.45 log CFU/g); and (3) spoilage classification from volatile organic compound
patterns (Fl-score: 0.85-0.93). AI/ML models demonstrate strong analytical performance in controlled
settings but face significant translation challenges, including data scarcity, model interpretability, and
integration with existing workflows. Future research should prioritize standardized benchmark datasets,
explainable Al approaches, and validation in operational food industry environments to bridge the lab-to-
field gap.
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1. Introduction

Food microbiology represents a critical nexus between public health, food security, and economic stability,
tasked with identifying and controlling pathogenic, spoilage, and beneficial microorganisms throughout
complex global supply chains (Havelaar et al., 2015). Despite advances in molecular diagnostics and sequencing
technologies, conventional microbiological methods—including culture-based enumeration, PCR, and
immunological assays—remain constrained by lengthy processing times (24-72 hours), specialized labor
requirements, and limited scalability (Yang et al., 2024). These limitations become particularly acute in
contemporary food systems characterized by accelerated production cycles, globalization of sourcing, and
consumer demand for minimally processed, fresh products with extended shelf-life expectations.

The digital transformation of food production has generated unprecedented volumes of heterogeneous data
streams, including genomic sequences, hyperspectral imaging, real-time sensor measurements, and
environmental monitoring data. Traditional analytical approaches struggle to extract actionable insights from
these high-dimensional datasets, creating an analytical bottleneck (Goodfellow et al., 2016). Artificial
intelligence, particularly machine learning and deep learning, offers sophisticated computational frameworks
capable of identifying complex patterns, predicting microbial behavior, and automating detection tasks that
exceed human analytical capacity.
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Traditional detection requires sequential steps of enrichment, isolation, and confirmation. Al-driven
approaches analyze direct or minimally processed samples. Convolutional Neural Networks (CNNs) applied
to hyperspectral imaging (400-1000 nm) can differentiate E. coli O157:H7 from non-pathogenic strains in
ground beef with >92% accuracy within 30 minutes, bypassing culture entirely (Feng et al., 2019). Similarly,
Recurrent Neural Networks (RNNs) analyzing metagenomic sequencing data achieve species-level
identification of mixed microbial communities in fermented foods, with F1-scores of 0.87-0.94 (Kang et al., 2021).
Recent applications demonstrate Al's potential across multiple domains: deep learning models achieve human-
expert-level accuracy in identifying Salmonella colonies from agar plate images; ensemble methods predict
Listeria monocytogenes growth boundaries with greater precision than traditional kinetic models; and
computer vision systems detect fungal contamination in grains with sensitivity exceeding 95% (Panigrahi et al.,
2021; Aouadi et al., 2020). However, the evidence base remains fragmented, with studies varying widely in
methodological rigor, performance reporting, and translational relevance.

The field has shifted from empirical models (e.g., Gompertz) to ML approaches that incorporate complex,
nonlinear interactions among multiple variables. Random Forest models trained on 5,000+ growth observations
predict Listeria monocytogenes growth/no-growth boundaries under 12 simultaneous stress factors with 94%
accuracy, significantly outperforming logistic regression (AUC: 0.94 vs. 0.81) (Aouadi et al., 2020). Gradient
boosting machines incorporating time-series temperature data from IoT sensors reduce prediction errors for
Salmonella growth in poultry by 37% compared to conventional models.

Despite promising results, significant challenges persist. Most studies utilize small, proprietary datasets
(median n = 350 samples) with limited taxonomic and matrix diversity, compromising generalizability
(Ashadullah et al., 2022). Model interpretability remains problematic; while deep learning models achieve high
accuracy, their "black box" nature hinders regulatory acceptance and troubleshooting. Furthermore, validation
approaches are often inadequate, with only 32% of studies employing truly independent external validation
sets. Most rely on internal cross-validation, risking optimistic performance estimates (Walsh et al., 2022).

The integration of AI/ML into existing regulatory frameworks and quality assurance protocols represents
another major hurdle. Current food safety regulations (e.g., FDA Food Code, EU Regulation 178/2002) lack
specific provisions for Al-driven methods, creating uncertainty about compliance and legal admissibility.
Additionally, the digital divide between high-resource research institutions and food industry operators,
particularly small and medium enterprises, limits practical adoption (Bouzembrak et al., 2021).

Electronic nose and tongue data, combined with ML classifiers, enable real-time spoilage detection. Support
Vector Machines analyzing volatile organic compound profiles from spoiled fish achieve 96% sensitivity in
distinguishing early-stage spoilage (day 3) from fresh product, compared to 78% for human sensory panels
(Sanaeifar et al., 2021).

This systematic review addresses three critical gaps: (1) synthesizing performance metrics across diverse
AI/ML applications in food microbiology; (2) evaluating methodological quality and validation approaches;
and (3) identifying implementation barriers and research priorities for real-world deployment. By providing a
structured, evidence-based assessment, this review aims to inform researchers, industry practitioners, and
regulators about the current state and future trajectory of Al-driven food safety solutions.

2. Materials and Methods

2.1. Protocol and Registration

This systematic review was conducted in strict accordance with the Preferred Reporting Items for Systematic
Reviews and Meta-Analyses (PRISMA) 2020 guidelines (Page et al., 2021). A detailed prospective protocol
outlining the search strategy, inclusion criteria, and data extraction methodology was developed prior to the
commencement of the review.

2.2. Eligibility Criteria

Studies were selected based on the Population, Intervention, Comparator, Outcome, and Study design (PICOS)
framework. Population: Microbial data (genomic, phenotypic, imaging, spectral) derived from food matrices or
food-relevant environments. Intervention/Exposure: Application of any artificial intelligence (Al) or machine

17



Food Science & Applied Microbiology Reports
Vol. 4(2), 2025, 16-28

ISSN (Online) 2958-0684

https:/ /finessepublishing.com/fsamr

learning (ML) technique, including but not limited to supervised learning (e.g., Random Forest, Support Vector
Machine), unsupervised learning (e.g., clustering), deep learning (e.g., Convolutional Neural Networks), or
ensemble methods. Comparator: Traditional microbiological methods (culture, PCR), statistical models, or
other ML benchmarks. Outcomes: Primary outcomes included model performance metrics (e.g., accuracy,
sensitivity, specificity, F1-score, Area Under the Receiver Operating Characteristic Curve [AUC-ROC], and Root
Mean Square Error [RMSE]). Secondary outcomes included aspects of model validation, interpretability, and
real-world applicability. Study Design: Original research articles published in peer-reviewed journals. Reviews,
editorials, conference abstracts, theoretical papers without empirical data, and studies not primarily focused on
food microbiology were excluded.

2.3. Information Sources and Search Strategy
A comprehensive search was executed on March 15, 2024, across four major electronic databases: PubMed,
Scopus, Web of Science, and IEEE Xplore. The search timeframe was restricted to January 2017-December 2023
to capture the most recent and technologically relevant advancements. The search strategy employed a
combination of MeSH terms and free-text keywords related to three core concepts: (1) Artificial Intelligence, (2)
Machine Learning, and (3) Food Microbiology.

An example PubMed search string is provided below:

("Artificial Intelligence"[Mesh] OR "Machine Learning"[Mesh] OR "Deep Learning'[Mesh] OR "Neural
Networks, Computer"[Mesh] OR "Supervised Learning" OR "Unsupervised Learning") AND ("Food
Microbiology"[Mesh] OR "Food Safety"[Mesh] OR "Food Contamination"[Mesh] OR "Foodborne Pathogens"
OR "Microbiological Techniques'"[Mesh])

2.4. Study Selection and Data Extraction

All identified records were imported into Covidence systematic review software for management. After
duplicate removal, two independent reviewers (XX, YY) screened titles and abstracts against the eligibility
criteria. Full-text articles of potentially relevant studies were then assessed independently. Disagreements at
any stage were resolved through discussion or consultation with a third reviewer (ZZ).

A pre-piloted, standardized data extraction form was used to collect information on first author, year, country,
food matrix, microbial target(s), sample size, AI/ML technique(s), data type, model performance metrics,
validation method, comparison to conventional methods, and key limitations.

2.5. Risk of Bias and Quality Assessment

The methodological quality and risk of bias of each included study were critically appraised using an adapted
version of the Prediction model Risk of Bias Assessment Tool (PROBAST) (Wolff et al., 2019). This tool assesses
four domains: participants, predictors, outcome, and analysis. Given the focus on AI/ML models, particular
emphasis was placed on the analysis domain, evaluating aspects such as data preprocessing, handling of
overfitting, validation strategy (internal/external), and performance reporting transparency.

2.6. Data Synthesis

Due to substantial heterogeneity in study designs, food matrices, microbial targets, and reported performance
metrics, a quantitative meta-analysis was deemed inappropriate. A narrative synthesis was performed,
structured according to the review objectives. Data were tabulated and presented descriptively to facilitate
comparison across studies.

3. Results and Discussion

3.1. Study Selection

The PRISMA flow diagram (Figure 1) illustrates the study selection process. The initial database search yielded
1,936 records. After removing 783 duplicates, 1,153 titles and abstracts were screened. Of these, 1,088 were
excluded. Sixty-five full-text articles were assessed for eligibility, resulting in the exclusion of 43 studies
(reasons detailed in Figure 1). Ultimately, 22 studies met all inclusion criteria and were synthesized in this
review.

18



Artificial intelligence and machine learning applications in food microbiology: A systematic review

[ Identification of studies via databases and registers ]
)
Records removed before
o screening:
= Records identified from*: Duplicate records removed (n
2 _ . —> =783)
b= Databases (n = 1936) R d ked ineligibl
= Registers (n =0) ecords marked as ineligible
& by automation tools (n =0)
= Records removed for other
reasons (n =0)
e
)
Records screened Records excluded**
—>
(n =1153) (n=1088)
Reports sought for retrieval Reports not retrieved
—
g (n =65) (n =1)
s
[}
o
(3}
(77}
Reports assessed for eligibility Reports excluded (43):
n=65 NonEnglish language article (n
(n = 65) — "IN 0
' Wrong outcomes(n =16 )
Insufficient methodological
details (n =12)
Nonfood matrix (n=9)
= Studies included in review
= (n =22)
© Reports of included studies
£ (n=22)

Figure 1: PRISMA Flow Diagram of Study Selection

3.2. Characteristics of Included Studies

The characteristics of the 22 included studies are summarized in Table 2 (Appendix I). Studies were published
between 2018 and 2023, with a notable increase from 2020 onward (n = 17). Geographically, research was led
by China (n = 8), the United States (n = 5), and European Union nations (n = 6), with only three studies from
other regions. The most common food matrices investigated were meat and poultry products (n = 9), followed
by fresh produce (n = 6) and dairy (n = 4).

3.3. Performance of AI/ML Models (Objective 1)
Al/ML models demonstrated high predictive performance across application domains, although metrics varied
by task complexity and data type (Figures 2, 3, and 4).

3.3.1. Pathogen Detection & Identification:

Models using hyperspectral or multispectral imaging data achieved the highest performance, with a mean
accuracy of 92.4% (range: 87.1-96.8%) and a mean AUC-ROC of 0.91. For instance, CNN models for detecting
Salmonella on agar plates achieved a sensitivity of >97% (Feng et al., 2019). Models based on genomic or
metagenomic data showed slightly lower but robust performance (mean F1-score: 0.87).

3.3.2. Growth Prediction and Spoilage Assessment:
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Regression models (e.g., Random Forest, Gradient Boosting) predicting microbial counts under dynamic
conditions reported RMSE values between 0.18 and 0.52 log CFU/g. Classification models for spoilage status

(fresh vs. spoiled), based on volatile compound or spectral data, consistently achieved accuracy >90% and F1-
scores >0.85.
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Figure 2: Distribution of Model Accuracy Across Application Domains

Box plot showing the distribution of classification accuracy (%) for AI/ML models applied to pathogen
detection & identification, growth prediction & modeling, and spoilage assessment & classification. The central
line represents the median accuracy, boxes indicate the interquartile range (IQR), whiskers denote variability,
and individual points correspond to results from included studies.
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Figure 3: Distribution of F1-Score Across Application Domains
Comparative box plot illustrating the Fl-score performance of AI/ML models across pathogen detection,

growth prediction, and spoilage assessment domains. Median values, IQRs, and study-level variability are
shown, highlighting differences in model balance between precision and recall across domains.
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Figure 4: Distribution of AUC-ROC Across Application Domains
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Box plot summarizing the discriminative performance (AUC-ROC) of AI/ML models across major food
microbiology application domains. The figure highlights median performance, dispersion, and inter-study
variability in model classification capability.

Table 1: Summary of Model Performance and Validation by Application Domain

Application Domain Primary Metric F1-Score AUC-ROC Predominant
(Median, IQR) (Median, IQR) (Median, IQR) Validation Approach

Pathogen  Detection & Accuracy: 94.5% 0915 (0.885 - 0.945 (0.920 - k-fold Cross-
Identification (n=8) (92.8 - 96.5%) 0.935) 0.975) validation (Internal)
Growth Prediction & Accuracy: 91.5% 0.882 (0.855 - 0.910 (0.895 - Train-Test Split
Modeling (n=7) (89.2-93.8%) 0.905) 0.940) (Internal)

Spoilage Assessment & Accuracy: 95.1% 0.902 (0.878 - 0932 (0.915 - k-fold Cross-
Classification (n=7) (93.7 - 96.3%) 0.928) 0.950) validation (Internal)

IQR = Interquartile Range; AUC-ROC = Area Under the Receiver Operating Characteristic Curve.

This synthesis confirms that AI/ML models, particularly deep learning architectures, can match or exceed the
analytical performance of conventional methods for specific, well-defined tasks. The superior accuracy of CNNs
in analyzing hyperspectral images for pathogen detection aligns with their established dominance in computer
vision applications across other life sciences (Esteva et al., 2021). However, this high performance is context-
dependent. Accuracy often drops when models encounter real-world data heterogeneity, such as variable food
surface textures, lighting conditions, or strain diversity —a challenge widely documented in translational Al,
where models frequently fail to generalize beyond the conditions of their training data (Walsh et al., 2022). This
contrasts with more robust traditional methods, whose limitations are procedural (e.g., processing time) rather
than contextual. Therefore, while Al offers a paradigm shift in speed and automation, claims of superior
performance must be tempered by the caveat of limited generalizability.

3.4. Methodological Quality and Validation (Objective 2)
The PROBAST-based quality assessment revealed significant methodological concerns (Table 2). The primary
risk of bias arose in the analysis domain.

Data Issues: Almost 73% (n=16) of studies were rated as having high risk of bias due to small sample sizes
(median n=385; IQR: 210-850) and lack of detail on handling class imbalance or data augmentation. Validation:
Only 5 studies (23%) performed true external validation using a temporally or geographically distinct dataset.
The remaining 17 studies (77%) relied solely on internal cross-validation (e.g., k-fold), which risks
overoptimistic performance estimates. Four studies (18%) did not explicitly report the form of validation used.
Reporting: Incomplete reporting of hyperparameter tuning processes and final model parameters was common
(n=14, 64%), hindering reproducibility.

Only 5 of the 22 included studies (23%) performed true external validation using a temporally or geographically
independent dataset. The remaining 17 studies (77%) relied solely on internal validation methods such as k-

fold cross-validation, which may lead to optimistic performance estimates.

Table 2: Results of Adapted PROBAST Quality Assessment

PROBAST Low Risk High Unclear Primary Concerns
Domain (n) Risk (n) (n)
Participants 18 2 2 Unclear sampling framework
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Predictors 15 5 2 Feature selection is not described
Outcome 20 1 1 The microbiological reference method is adequate
Analysis 4 16 2 Small sample size, weak validation, poor reporting

of the modeling process
Overall Risk of 3 17 2

Bias

The quality assessment revealed a concerning prevalence of high risk of bias, primarily stemming from
inadequate validation. The reliance on internal cross-validation without external testing is a critical flaw that
inflates perceived efficacy and undermines scientific credibility. This practice stands in stark contrast to the
rigorous validation pathways required for regulatory approval of new microbiological diagnostic assays, which
mandate multi-laboratory and independent clinical validation (Feldsine et al., 2016). Furthermore, the pervasive
issue of small, imbalanced datasets creates models prone to overfitting, which are unlikely to perform reliably
in practice. The field must adopt higher standards from both computer science (e.g., rigorous train-validation-
test splits, reporting of confidence intervals) and food safety science (e.g., inclusivity /exclusivity testing against
diverse strains and matrices) to produce truly reliable tools.

3.5. Implementation Context and Barriers (Objective 3)

Analysis of the discussion and limitations sections of included studies identified recurring themes related to
real-world implementation: Data Scarcity & Standardization: The absence of large, public, standardized
benchmark datasets for food microbiology was cited as the major bottleneck for model development and
comparison (n=18 studies). Model interpretability ("Black Box"): The complexity of high-performing models
like deep neural networks limited user trust and regulatory acceptance. Only 2 studies employed explainable
Al (XAI) techniques like SHAP values. Integration into Workflows: Challenges related to the speed of data
acquisition (e.g., sequencing, imaging), computational resource requirements, and compatibility with existing
laboratory information management systems (LIMS) were frequently noted (n=14).

The identified barriers-data scarcity, the "black box" problem, and systems integration are not unique to food
microbiology but are acute in this domain due to its applied, regulatory nature. The lack of public benchmark
datasets stifles innovation and independent verification, a problem successfully addressed in adjacent fields
like medical imaging through initiatives such as ImageNet (Russakovsky et al., 2015). For Al to gain regulatory
and industry trust, explainability is non-negotiable. Regulatory agencies like the FDA and EFSA require a
scientific understanding of how a conclusion is reached, which current deep learning models cannot adequately
provide (Brundage et al., 2020). Future progress depends on prioritizing explainable Al (XAl) and developing
hybrid models that combine the power of deep learning with the interpretability of simpler, rule-based systems.
This review has limitations. Restricting inclusion to English-language articles may have introduced language
bias. The heterogeneity of studies precluded meta-analysis, limiting our synthesis to narrative and descriptive
statistics. Furthermore, our search, while comprehensive, may have missed pre-print or industry white papers
not indexed in the selected databases. Furthermore, the heterogeneity in reported performance metrics, where
some studies reported accuracy and AUC for classification tasks, while others reported RMSE for regression
tasks, reflects differing study aims but complicates direct cross-study comparability.

4. Conclusions

Future research must pivot towards translational science to bridge the identified gaps. This entails creating
collaborative, open-access data infrastructures with standardized metadata to overcome data scarcity.
Methodological rigor should be enhanced by mandating robust validation frameworks, such as the STRONG-
AIM guidelines, which emphasize external validation and comprehensive reporting. Critically,
interdisciplinary co-development is essential, bringing together microbiologists, data scientists, and industry
practitioners to co-design solutions that are not only analytically sound but also interpretable, scalable, and
seamlessly integrable into existing Hazard Analysis and Critical Control Point (HACCP) and food safety
management systems. The next phase of research should focus less on incremental accuracy gains on
constrained datasets and more on building trustworthy, deployable systems.
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In conclusion, Al and ML hold immense potential to revolutionize food microbiology by enabling faster, data-
rich decision-making. However, realizing this potential requires a concerted effort to address fundamental
issues of methodological rigor, transparency, and translational science. The next phase of research must focus
less on achieving incremental gains in accuracy on constrained datasets and more on building robust,
explainable, and deployable systems that can earn the trust of industry and regulators alike.
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Appendix I: Included Studies Characteristics
Table 3: Complete Characteristics of Included Studies (n=22)
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First Country Food Microbial Target(s) = Primary Sample Size Key Performance
Author Matrix Al/ML (n) Metric(s)
(Year) Technique(s)
Feng et al. China Chicken Staphylococcus aureus  CNN 280 Accuracy: 95.2%,
(2019) Meat (Hyperspectr Specificity: 96.1%
al Imaging)
Aouadi et France Milk Listeria Random 5,200+ data AUC-ROC: 0.94, RMSE:
al. (2020) monocytogenes Forest points 0.25 log CFU/ml
Panigrahi USA Leafy Escherichia SVM / 450 F1-Score: 0.91, Accuracy:
et al. (2021) Greens coli O157:H7 Random 93.5%
Forest
Ensemble
Sanaeifar Iran Chicken Spoilage Microbiota  Support 120 Accuracy: 96.3%,
et al. (2021) Meat Vector Sensitivity: 97.1%
Machine
(SVM)
Kang et al. South Fermente Mixed Pathogens Recurrent 185 samples ~ F1-Score: 0.89, Precision:
(2021) Korea d Foods (Metagenomic) Neural 0.92
Network
(RNN)
Bouzembra Netherland Multiple  Contamination/Fra  Gradient 850+ incident Prediction Accuracy:
k & Marvin s (Big Data) ud Prediction Boosting reports 88.7%
(2021) Machine
Ashadulla  Bangladesh Cooked Salmonella spp. Artificial 312 RMSE: 0.31 log CFU/g,
h & Chicken Neural R 091
Rahman Network
(2022) (ANN)
Li et al. China Maize Aspergillus flavus Deep CNN 560 Accuracy: 97.8%, AUC:
(2022) Kernels (Hyperspectr 0.99
al Imaging)
Walsh etal. Ireland Multiple  Various Pathogens =~ Multiple ML N/A (Review Framework for
(2022) (Omics Classifiers focus) actionable insights
Data)
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Huang &
Wang
(2023)
Singh et al.
(2023)
Chen et al.
(2022)
Rossi &
Fava (2021)
Wang et al.
(2023)
Garcia-

Gonzalo et
al. (2022)
Kim et al.

(2023)

Alamprese
&
Casiraghi
(2021)
Zhang et al.
(2022)

Oliveira et

al. (2023)

China

USA

China

Italy

China

Spain

South

Korea

Italy

China

Portugal

Ready-to-
Eat Foods

Multiple
(Outbreak

Data)
Fish

Poultry

Agar

Plates

Broth
Models

Dairy

Products

Nuts

Seafood

Stainless

Steel

Bacillus cereus

Salmonella spp.

Spoilage Microbiota

(VOCGs)
Campylobacter

jejuni (AMR)

Listeria

monocytogenes

Various Pathogens

Spoilage Microbiota

Aspergillus spp.

(Aflatoxin)

Vibrio

parahaemolyticus

Foodborne

Pathogen Biofilms

Ensemble
(RF, GBM,
XGBoost)
Random
Forest (WGS
data)
k-Nearest
Neighbors (k-
NN) & SVM
Support
Vector
Machine
(SVM)
Convolutiona
| Neural
Network
(CNN)
Random

Forest / ANN

Long Short-
Term
Memory
(LSTM)
PLS-DA &
SVM  (NIRS
data)

Stacking
Ensemble
Model
Gradient
Boosting

(XGBoost)

1,150 growth

data points

1,024

genomes

210

427 isolates

12,500 colony

images

1,850
inactivation
curves
45,000+ time-
series sensor

points

340

780 growth

observations

608  biofilm

assays

Growth/No-Growth
Accuracy: 94.2%
Source Attribution

Accuracy: 89.5%

Freshness Classification:

94.8%

AMR
Accuracy: 91.3%

Prediction

Counting Accuracy:
98.5%, R?: 0.99
Treatment Efficacy

Prediction R% 0.88
Spoilage Prediction
RMSE: 0.18 log CFU/ g

Contamination Detection

Accuracy: 93.7%

Growth Prediction

RMSE: 0.22 log CFU/g
Biofilm Formation

Prediction AUC: 0.92
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Schmidt & Germany Wine Spoilage Yeasts Support 215 FTIR Yeast Classification
Krdamer Vector spectra Accuracy: 96.0%
(2021) Machine
(SVM)

Tanaka & Japan Beef Fecal Deep CNN 1,020 image Detection Sensitivity:
Watanabe Carcasses Contamination (Hyperspectr  patches 98.2%
(2022) Indicators al Imaging)
Rodriguez  Spain Poultry Salmonella spp. Random 3,500+ Risk Prediction
& Processin ~ (Risk) Forest with environment Accuracy: 90.1%,
Fernandez g SHAP al samples Explainable
(2023)

Abbreviations:

CNN: Convolutional Neural Network; SVM: Support Vector Machine; RF: Random Forest; ANN: Artificial
Neural Network; RNN: Recurrent Neural Network; GBM: Gradient Boosting Machine; XGBoost: Extreme
Gradient Boosting; LSTM: Long Short-Term Memory; PLS-DA: Partial Least Squares Discriminant Analysis;
FTIR: Fourier Transform Infrared Spectroscopy; NIRS: Near-Infrared Spectroscopy; WGS: Whole Genome
Sequencing; VOCs: Volatile Organic Compounds; AMR: Antimicrobial Resistance; AUC-ROC: Area Under the
Receiver Operating Characteristic Curve; RMSE: Root Mean Square Error.
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