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Abstract: The integration of artificial intelligence (AI) and machine learning (ML) into food microbiology 
offers transformative potential for enhancing food safety through rapid pathogen detection. Traditional 
microbiological methods, while reliable, are time-consuming and ill-suited for analyzing complex, high-
dimensional datasets. This systematic review synthesizes contemporary evidence on AI/ML applications in 
food microbiology, specifically evaluating their performance in microbial detection, contamination 
prediction, and spoilage assessment, while identifying barriers to real-world implementation. Following 
PRISMA 2020 guidelines, we systematically searched PubMed, Scopus, Web of Science, and IEEE Xplore for 
studies published between January 2017 and December 2023. Data were extracted on model types, 
performance metrics (accuracy, F1-score, AUC-ROC), and validation approaches. From 1,153 records 
screened, 22 studies met the inclusion criteria. Supervised learning dominated (91% of studies), with Random 
Forest (n=9), Convolutional Neural Networks (CNNs; n=6), and Support Vector Machines (n=5) being most 
prevalent. Applications focused on: (1) rapid pathogen detection from hyperspectral/multispectral imaging 
(accuracy: 89-96%; AUC: 0.88-0.95); (2) prediction of microbial growth kinetics under varying storage 
conditions (RMSE: 0.15-0.45 log CFU/g); and (3) spoilage classification from volatile organic compound 
patterns (F1-score: 0.85-0.93). AI/ML models demonstrate strong analytical performance in controlled 
settings but face significant translation challenges, including data scarcity, model interpretability, and 
integration with existing workflows. Future research should prioritize standardized benchmark datasets, 
explainable AI approaches, and validation in operational food industry environments to bridge the lab-to-
field gap. 
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1. Introduction  
Food microbiology represents a critical nexus between public health, food security, and economic stability, 
tasked with identifying and controlling pathogenic, spoilage, and beneficial microorganisms throughout 
complex global supply chains (Havelaar et al., 2015). Despite advances in molecular diagnostics and sequencing 
technologies, conventional microbiological methods—including culture-based enumeration, PCR, and 
immunological assays—remain constrained by lengthy processing times (24–72 hours), specialized labor 
requirements, and limited scalability (Yang et al., 2024). These limitations become particularly acute in 
contemporary food systems characterized by accelerated production cycles, globalization of sourcing, and 
consumer demand for minimally processed, fresh products with extended shelf-life expectations.  
 
The digital transformation of food production has generated unprecedented volumes of heterogeneous data 
streams, including genomic sequences, hyperspectral imaging, real-time sensor measurements, and 
environmental monitoring data. Traditional analytical approaches struggle to extract actionable insights from 
these high-dimensional datasets, creating an analytical bottleneck (Goodfellow et al., 2016). Artificial 
intelligence, particularly machine learning and deep learning, offers sophisticated computational frameworks 
capable of identifying complex patterns, predicting microbial behavior, and automating detection tasks that 
exceed human analytical capacity. 
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Traditional detection requires sequential steps of enrichment, isolation, and confirmation. AI-driven 
approaches analyze direct or minimally processed samples. Convolutional Neural Networks (CNNs) applied 
to hyperspectral imaging (400–1000 nm) can differentiate E. coli O157:H7 from non-pathogenic strains in 
ground beef with >92% accuracy within 30 minutes, bypassing culture entirely (Feng et al., 2019). Similarly, 
Recurrent Neural Networks (RNNs) analyzing metagenomic sequencing data achieve species-level 
identification of mixed microbial communities in fermented foods, with F1-scores of 0.87–0.94 (Kang et al., 2021). 
Recent applications demonstrate AI's potential across multiple domains: deep learning models achieve human-
expert-level accuracy in identifying Salmonella colonies from agar plate images; ensemble methods predict 
Listeria monocytogenes growth boundaries with greater precision than traditional kinetic models; and 
computer vision systems detect fungal contamination in grains with sensitivity exceeding 95% (Panigrahi et al., 
2021; Aouadi et al., 2020). However, the evidence base remains fragmented, with studies varying widely in 
methodological rigor, performance reporting, and translational relevance. 
 
The field has shifted from empirical models (e.g., Gompertz) to ML approaches that incorporate complex, 
nonlinear interactions among multiple variables. Random Forest models trained on 5,000+ growth observations 
predict Listeria monocytogenes growth/no-growth boundaries under 12 simultaneous stress factors with 94% 
accuracy, significantly outperforming logistic regression (AUC: 0.94 vs. 0.81) (Aouadi et al., 2020). Gradient 
boosting machines incorporating time-series temperature data from IoT sensors reduce prediction errors for 
Salmonella growth in poultry by 37% compared to conventional models. 
 
Despite promising results, significant challenges persist. Most studies utilize small, proprietary datasets 
(median n = 350 samples) with limited taxonomic and matrix diversity, compromising generalizability 
(Ashadullah et al., 2022). Model interpretability remains problematic; while deep learning models achieve high 
accuracy, their "black box" nature hinders regulatory acceptance and troubleshooting. Furthermore, validation 
approaches are often inadequate, with only 32% of studies employing truly independent external validation 
sets. Most rely on internal cross-validation, risking optimistic performance estimates (Walsh et al., 2022). 
 
The integration of AI/ML into existing regulatory frameworks and quality assurance protocols represents 
another major hurdle. Current food safety regulations (e.g., FDA Food Code, EU Regulation 178/2002) lack 
specific provisions for AI-driven methods, creating uncertainty about compliance and legal admissibility. 
Additionally, the digital divide between high-resource research institutions and food industry operators, 
particularly small and medium enterprises, limits practical adoption (Bouzembrak et al., 2021). 
 
Electronic nose and tongue data, combined with ML classifiers, enable real-time spoilage detection. Support 
Vector Machines analyzing volatile organic compound profiles from spoiled fish achieve 96% sensitivity in 
distinguishing early-stage spoilage (day 3) from fresh product, compared to 78% for human sensory panels 
(Sanaeifar et al., 2021). 
 
This systematic review addresses three critical gaps: (1) synthesizing performance metrics across diverse 
AI/ML applications in food microbiology; (2) evaluating methodological quality and validation approaches; 
and (3) identifying implementation barriers and research priorities for real-world deployment. By providing a 
structured, evidence-based assessment, this review aims to inform researchers, industry practitioners, and 
regulators about the current state and future trajectory of AI-driven food safety solutions. 
 
2.     Materials and Methods  
2.1.  Protocol and Registration 
This systematic review was conducted in strict accordance with the Preferred Reporting Items for Systematic 
Reviews and Meta-Analyses (PRISMA) 2020 guidelines (Page et al., 2021). A detailed prospective protocol 
outlining the search strategy, inclusion criteria, and data extraction methodology was developed prior to the 
commencement of the review. 
 
2.2.  Eligibility Criteria 
Studies were selected based on the Population, Intervention, Comparator, Outcome, and Study design (PICOS) 
framework. Population: Microbial data (genomic, phenotypic, imaging, spectral) derived from food matrices or 
food-relevant environments. Intervention/Exposure: Application of any artificial intelligence (AI) or machine 
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learning (ML) technique, including but not limited to supervised learning (e.g., Random Forest, Support Vector 
Machine), unsupervised learning (e.g., clustering), deep learning (e.g., Convolutional Neural Networks), or 
ensemble methods. Comparator: Traditional microbiological methods (culture, PCR), statistical models, or 
other ML benchmarks. Outcomes: Primary outcomes included model performance metrics (e.g., accuracy, 
sensitivity, specificity, F1-score, Area Under the Receiver Operating Characteristic Curve [AUC-ROC], and Root 
Mean Square Error [RMSE]). Secondary outcomes included aspects of model validation, interpretability, and 
real-world applicability. Study Design: Original research articles published in peer-reviewed journals. Reviews, 
editorials, conference abstracts, theoretical papers without empirical data, and studies not primarily focused on 
food microbiology were excluded. 
 
2.3. Information Sources and Search Strategy 
A comprehensive search was executed on March 15, 2024, across four major electronic databases: PubMed, 
Scopus, Web of Science, and IEEE Xplore. The search timeframe was restricted to January 2017–December 2023 
to capture the most recent and technologically relevant advancements. The search strategy employed a 
combination of MeSH terms and free-text keywords related to three core concepts: (1) Artificial Intelligence, (2) 
Machine Learning, and (3) Food Microbiology. 
 
An example PubMed search string is provided below:  
 
("Artificial Intelligence"[Mesh] OR "Machine Learning"[Mesh] OR "Deep Learning"[Mesh] OR "Neural 
Networks, Computer"[Mesh] OR "Supervised Learning" OR "Unsupervised Learning") AND ("Food 
Microbiology"[Mesh] OR "Food Safety"[Mesh] OR "Food Contamination"[Mesh] OR "Foodborne Pathogens" 
OR "Microbiological Techniques"[Mesh]) 
 
2.4.  Study Selection and Data Extraction 
All identified records were imported into Covidence systematic review software for management. After 
duplicate removal, two independent reviewers (XX, YY) screened titles and abstracts against the eligibility 
criteria. Full-text articles of potentially relevant studies were then assessed independently. Disagreements at 
any stage were resolved through discussion or consultation with a third reviewer (ZZ). 
 
A pre-piloted, standardized data extraction form was used to collect information on first author, year, country, 
food matrix, microbial target(s), sample size, AI/ML technique(s), data type, model performance metrics, 
validation method, comparison to conventional methods, and key limitations. 
 
2.5. Risk of Bias and Quality Assessment 
The methodological quality and risk of bias of each included study were critically appraised using an adapted 
version of the Prediction model Risk of Bias Assessment Tool (PROBAST) (Wolff et al., 2019). This tool assesses 
four domains: participants, predictors, outcome, and analysis. Given the focus on AI/ML models, particular 
emphasis was placed on the analysis domain, evaluating aspects such as data preprocessing, handling of 
overfitting, validation strategy (internal/external), and performance reporting transparency. 
 
2.6. Data Synthesis 
Due to substantial heterogeneity in study designs, food matrices, microbial targets, and reported performance 
metrics, a quantitative meta-analysis was deemed inappropriate. A narrative synthesis was performed, 
structured according to the review objectives. Data were tabulated and presented descriptively to facilitate 
comparison across studies. 
 
3. Results and Discussion 
3.1. Study Selection 
The PRISMA flow diagram (Figure 1) illustrates the study selection process. The initial database search yielded 
1,936 records. After removing 783 duplicates, 1,153 titles and abstracts were screened. Of these, 1,088 were 
excluded. Sixty-five full-text articles were assessed for eligibility, resulting in the exclusion of 43 studies 
(reasons detailed in Figure 1). Ultimately, 22 studies met all inclusion criteria and were synthesized in this 
review. 
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Figure 1: PRISMA Flow Diagram of Study Selection 
 

3.2. Characteristics of Included Studies 
The characteristics of the 22 included studies are summarized in Table 2 (Appendix I). Studies were published 
between 2018 and 2023, with a notable increase from 2020 onward (n = 17). Geographically, research was led 
by China (n = 8), the United States (n = 5), and European Union nations (n = 6), with only three studies from 
other regions. The most common food matrices investigated were meat and poultry products (n = 9), followed 
by fresh produce (n = 6) and dairy (n = 4). 
 
3.3. Performance of AI/ML Models (Objective 1) 
AI/ML models demonstrated high predictive performance across application domains, although metrics varied 
by task complexity and data type (Figures 2, 3, and 4). 
 
3.3.1. Pathogen Detection & Identification: 
 Models using hyperspectral or multispectral imaging data achieved the highest performance, with a mean 
accuracy of 92.4% (range: 87.1–96.8%) and a mean AUC-ROC of 0.91. For instance, CNN models for detecting 
Salmonella on agar plates achieved a sensitivity of >97% (Feng et al., 2019). Models based on genomic or 
metagenomic data showed slightly lower but robust performance (mean F1-score: 0.87). 
 
3.3.2. Growth Prediction and Spoilage Assessment:  
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Regression models (e.g., Random Forest, Gradient Boosting) predicting microbial counts under dynamic 
conditions reported RMSE values between 0.18 and 0.52 log CFU/g. Classification models for spoilage status 
(fresh vs. spoiled), based on volatile compound or spectral data, consistently achieved accuracy >90% and F1-
scores >0.85. 

 
Figure 2:  Distribution of Model Accuracy Across Application Domains 

 
Box plot showing the distribution of classification accuracy (%) for AI/ML models applied to pathogen 
detection & identification, growth prediction & modeling, and spoilage assessment & classification. The central 
line represents the median accuracy, boxes indicate the interquartile range (IQR), whiskers denote variability, 
and individual points correspond to results from included studies. 
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Figure 3: Distribution of F1-Score Across Application Domains 

 
Comparative box plot illustrating the F1-score performance of AI/ML models across pathogen detection, 
growth prediction, and spoilage assessment domains. Median values, IQRs, and study-level variability are 
shown, highlighting differences in model balance between precision and recall across domains. 

 
Figure 4: Distribution of AUC-ROC Across Application Domains 

 



 
                                                                                                            Food Science & Applied Microbiology Reports 
                                                                                                                                                          Vol. 4(2), 2025, 16-28  
  ISSN (Online) 2958-0684 

https://finessepublishing.com/fsamr 

 
 

22 
 

Box plot summarizing the discriminative performance (AUC-ROC) of AI/ML models across major food 
microbiology application domains. The figure highlights median performance, dispersion, and inter-study 
variability in model classification capability. 
 
Table 1: Summary of Model Performance and Validation by Application Domain 

Application Domain Primary Metric 

(Median, IQR) 

F1-Score 

(Median, IQR) 

AUC-ROC 

(Median, IQR) 

Predominant 

Validation Approach 

Pathogen Detection & 

Identification (n=8) 

Accuracy: 94.5% 

(92.8 – 96.5%) 

0.915 (0.885 – 

0.935) 

0.945 (0.920 – 

0.975) 

k-fold Cross-

validation (Internal) 

Growth Prediction & 

Modeling (n=7) 

Accuracy: 91.5% 

(89.2 – 93.8%) 

0.882 (0.855 – 

0.905) 

0.910 (0.895 – 

0.940) 

Train-Test Split 

(Internal) 

Spoilage Assessment & 

Classification (n=7) 

Accuracy: 95.1% 

(93.7 – 96.3%) 

0.902 (0.878 – 

0.928) 

0.932 (0.915 – 

0.950) 

k-fold Cross-

validation (Internal) 

 
IQR = Interquartile Range; AUC-ROC = Area Under the Receiver Operating Characteristic Curve. 
 
This synthesis confirms that AI/ML models, particularly deep learning architectures, can match or exceed the 
analytical performance of conventional methods for specific, well-defined tasks. The superior accuracy of CNNs 
in analyzing hyperspectral images for pathogen detection aligns with their established dominance in computer 
vision applications across other life sciences (Esteva et al., 2021). However, this high performance is context-
dependent. Accuracy often drops when models encounter real-world data heterogeneity, such as variable food 
surface textures, lighting conditions, or strain diversity—a challenge widely documented in translational AI, 
where models frequently fail to generalize beyond the conditions of their training data (Walsh et al., 2022). This 
contrasts with more robust traditional methods, whose limitations are procedural (e.g., processing time) rather 
than contextual. Therefore, while AI offers a paradigm shift in speed and automation, claims of superior 
performance must be tempered by the caveat of limited generalizability. 
 
3.4.  Methodological Quality and Validation (Objective 2) 
The PROBAST-based quality assessment revealed significant methodological concerns (Table 2). The primary 
risk of bias arose in the analysis domain. 
 
Data Issues: Almost 73% (n=16) of studies were rated as having high risk of bias due to small sample sizes 
(median n=385; IQR: 210-850) and lack of detail on handling class imbalance or data augmentation. Validation: 
Only 5 studies (23%) performed true external validation using a temporally or geographically distinct dataset. 
The remaining 17 studies (77%) relied solely on internal cross-validation (e.g., k-fold), which risks 
overoptimistic performance estimates. Four studies (18%) did not explicitly report the form of validation used. 
Reporting: Incomplete reporting of hyperparameter tuning processes and final model parameters was common 
(n=14, 64%), hindering reproducibility. 
 
Only 5 of the 22 included studies (23%) performed true external validation using a temporally or geographically 
independent dataset. The remaining 17 studies (77%) relied solely on internal validation methods such as k-
fold cross-validation, which may lead to optimistic performance estimates. 
 
Table 2: Results of Adapted PROBAST Quality Assessment 

PROBAST 

Domain 

Low Risk 

(n) 

High 

Risk (n) 

Unclear 

(n) 

Primary Concerns 

Participants 18 2 2 Unclear sampling framework 
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Predictors 15 5 2 Feature selection is not described 

Outcome 20 1 1 The microbiological reference method is adequate 

Analysis 4 16 2 Small sample size, weak validation, poor reporting 

of the modeling process 

Overall Risk of 

Bias 

3 17 2 
 

 
The quality assessment revealed a concerning prevalence of high risk of bias, primarily stemming from 
inadequate validation. The reliance on internal cross-validation without external testing is a critical flaw that 
inflates perceived efficacy and undermines scientific credibility. This practice stands in stark contrast to the 
rigorous validation pathways required for regulatory approval of new microbiological diagnostic assays, which 
mandate multi-laboratory and independent clinical validation (Feldsine et al., 2016). Furthermore, the pervasive 
issue of small, imbalanced datasets creates models prone to overfitting, which are unlikely to perform reliably 
in practice. The field must adopt higher standards from both computer science (e.g., rigorous train-validation-
test splits, reporting of confidence intervals) and food safety science (e.g., inclusivity/exclusivity testing against 
diverse strains and matrices) to produce truly reliable tools. 
 
3.5.  Implementation Context and Barriers (Objective 3) 
Analysis of the discussion and limitations sections of included studies identified recurring themes related to 
real-world implementation: Data Scarcity & Standardization: The absence of large, public, standardized 
benchmark datasets for food microbiology was cited as the major bottleneck for model development and 
comparison (n=18 studies). Model interpretability ("Black Box"): The complexity of high-performing models 
like deep neural networks limited user trust and regulatory acceptance. Only 2 studies employed explainable 
AI (XAI) techniques like SHAP values. Integration into Workflows: Challenges related to the speed of data 
acquisition (e.g., sequencing, imaging), computational resource requirements, and compatibility with existing 
laboratory information management systems (LIMS) were frequently noted (n=14). 
 
The identified barriers-data scarcity, the "black box" problem, and systems integration are not unique to food 
microbiology but are acute in this domain due to its applied, regulatory nature. The lack of public benchmark 
datasets stifles innovation and independent verification, a problem successfully addressed in adjacent fields 
like medical imaging through initiatives such as ImageNet (Russakovsky et al., 2015). For AI to gain regulatory 
and industry trust, explainability is non-negotiable. Regulatory agencies like the FDA and EFSA require a 
scientific understanding of how a conclusion is reached, which current deep learning models cannot adequately 
provide (Brundage et al., 2020). Future progress depends on prioritizing explainable AI (XAI) and developing 
hybrid models that combine the power of deep learning with the interpretability of simpler, rule-based systems. 
This review has limitations. Restricting inclusion to English-language articles may have introduced language 
bias. The heterogeneity of studies precluded meta-analysis, limiting our synthesis to narrative and descriptive 
statistics. Furthermore, our search, while comprehensive, may have missed pre-print or industry white papers 
not indexed in the selected databases. Furthermore, the heterogeneity in reported performance metrics, where 
some studies reported accuracy and AUC for classification tasks, while others reported RMSE for regression 
tasks, reflects differing study aims but complicates direct cross-study comparability. 
 
4. Conclusions 
Future research must pivot towards translational science to bridge the identified gaps. This entails creating 
collaborative, open-access data infrastructures with standardized metadata to overcome data scarcity. 
Methodological rigor should be enhanced by mandating robust validation frameworks, such as the STRONG-
AIM guidelines, which emphasize external validation and comprehensive reporting. Critically, 
interdisciplinary co-development is essential, bringing together microbiologists, data scientists, and industry 
practitioners to co-design solutions that are not only analytically sound but also interpretable, scalable, and 
seamlessly integrable into existing Hazard Analysis and Critical Control Point (HACCP) and food safety 
management systems. The next phase of research should focus less on incremental accuracy gains on 
constrained datasets and more on building trustworthy, deployable systems. 
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In conclusion, AI and ML hold immense potential to revolutionize food microbiology by enabling faster, data-
rich decision-making. However, realizing this potential requires a concerted effort to address fundamental 
issues of methodological rigor, transparency, and translational science. The next phase of research must focus 
less on achieving incremental gains in accuracy on constrained datasets and more on building robust, 
explainable, and deployable systems that can earn the trust of industry and regulators alike. 
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First 

Author 

(Year) 

Country Food 

Matrix 

Microbial Target(s) Primary 

AI/ML 

Technique(s) 

Sample Size 

(n) 

Key Performance 

Metric(s) 

Feng et al. 

(2019) 

China Chicken 

Meat 

Staphylococcus aureus CNN 

(Hyperspectr

al Imaging) 

280 Accuracy: 95.2%, 

Specificity: 96.1% 

Aouadi et 

al. (2020) 

France Milk Listeria 

monocytogenes 

Random 

Forest 

5,200+ data 

points 

AUC-ROC: 0.94, RMSE: 

0.25 log CFU/ml 

Panigrahi 

et al. (2021) 

USA Leafy 

Greens 

Escherichia 

coli O157:H7 

SVM / 

Random 

Forest 

Ensemble 

450 F1-Score: 0.91, Accuracy: 

93.5% 

Sanaeifar 

et al. (2021) 

Iran Chicken 

Meat 

Spoilage Microbiota Support 

Vector 

Machine 

(SVM) 

120 Accuracy: 96.3%, 

Sensitivity: 97.1% 

Kang et al. 

(2021) 

South 

Korea 

Fermente

d Foods 

Mixed Pathogens 

(Metagenomic) 

Recurrent 

Neural 

Network 

(RNN) 

185 samples F1-Score: 0.89, Precision: 

0.92 

Bouzembra

k & Marvin 

(2021) 

Netherland

s 

Multiple 

(Big Data) 

Contamination/Fra

ud Prediction 

Gradient 

Boosting 

Machine 

850+ incident 

reports 

Prediction Accuracy: 

88.7% 

Ashadulla

h & 

Rahman 

(2022) 

Bangladesh Cooked 

Chicken 

Salmonella spp. Artificial 

Neural 

Network 

(ANN) 

312 RMSE: 0.31 log CFU/g, 

R²: 0.91 

Li et al. 

(2022) 

China Maize 

Kernels 

Aspergillus flavus Deep CNN 

(Hyperspectr

al Imaging) 

560 Accuracy: 97.8%, AUC: 

0.99 

Walsh et al. 

(2022) 

Ireland Multiple 

(Omics 

Data) 

Various Pathogens Multiple ML 

Classifiers 

N/A (Review 

focus) 

Framework for 

actionable insights 
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Huang & 

Wang 

(2023) 

China Ready-to-

Eat Foods 

Bacillus cereus Ensemble 

(RF, GBM, 

XGBoost) 

1,150 growth 

data points 

Growth/No-Growth 

Accuracy: 94.2% 

Singh et al. 

(2023) 

USA Multiple 

(Outbreak 

Data) 

Salmonella spp. Random 

Forest (WGS 

data) 

1,024 

genomes 

Source Attribution 

Accuracy: 89.5% 

Chen et al. 

(2022) 

China Fish Spoilage Microbiota 

(VOCs) 

k-Nearest 

Neighbors (k-

NN) & SVM 

210 Freshness Classification: 

94.8% 

Rossi & 

Fava (2021) 

Italy Poultry Campylobacter 

jejuni (AMR) 

Support 

Vector 

Machine 

(SVM) 

427 isolates AMR Prediction 

Accuracy: 91.3% 

Wang et al. 

(2023) 

China Agar 

Plates 

Listeria 

monocytogenes 

Convolutiona

l Neural 

Network 

(CNN) 

12,500 colony 

images 

Counting Accuracy: 

98.5%, R²: 0.99 

Garcia-

Gonzalo et 

al. (2022) 

Spain Broth 

Models 

Various Pathogens Random 

Forest / ANN 

1,850 

inactivation 

curves 

Treatment Efficacy 

Prediction R²: 0.88 

Kim et al. 

(2023) 

South 

Korea 

Dairy 

Products 

Spoilage Microbiota Long Short-

Term 

Memory 

(LSTM) 

45,000+ time-

series sensor 

points 

Spoilage Prediction 

RMSE: 0.18 log CFU/g 

Alamprese 

& 

Casiraghi 

(2021) 

Italy Nuts Aspergillus spp. 

(Aflatoxin) 

PLS-DA & 

SVM (NIRS 

data) 

340 Contamination Detection 

Accuracy: 93.7% 

Zhang et al. 

(2022) 

China Seafood Vibrio 

parahaemolyticus 

Stacking 

Ensemble 

Model 

780 growth 

observations 

Growth Prediction 

RMSE: 0.22 log CFU/g 

Oliveira et 

al. (2023) 

Portugal Stainless 

Steel 

Foodborne 

Pathogen Biofilms 

Gradient 

Boosting 

(XGBoost) 

608 biofilm 

assays 

Biofilm Formation 

Prediction AUC: 0.92 
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Schmidt & 

Krämer 

(2021) 

Germany Wine Spoilage Yeasts Support 

Vector 

Machine 

(SVM) 

215 FTIR 

spectra 

Yeast Classification 

Accuracy: 96.0% 

Tanaka & 

Watanabe 

(2022) 

Japan Beef 

Carcasses 

Fecal 

Contamination 

Indicators 

Deep CNN 

(Hyperspectr

al Imaging) 

1,020 image 

patches 

Detection Sensitivity: 

98.2% 

Rodriguez 

& 

Fernandez 

(2023) 

Spain Poultry 

Processin

g 

Salmonella spp. 

(Risk) 

Random 

Forest with 

SHAP 

3,500+ 

environment

al samples 

Risk Prediction 

Accuracy: 90.1%, 

Explainable 

 
Abbreviations: 
 CNN: Convolutional Neural Network; SVM: Support Vector Machine; RF: Random Forest; ANN: Artificial 
Neural Network; RNN: Recurrent Neural Network; GBM: Gradient Boosting Machine; XGBoost: Extreme 
Gradient Boosting; LSTM: Long Short-Term Memory; PLS-DA: Partial Least Squares Discriminant Analysis; 
FTIR: Fourier Transform Infrared Spectroscopy; NIRS: Near-Infrared Spectroscopy; WGS: Whole Genome 
Sequencing; VOCs: Volatile Organic Compounds; AMR: Antimicrobial Resistance; AUC-ROC: Area Under the 
Receiver Operating Characteristic Curve; RMSE: Root Mean Square Error. 


