

Dietary assessment of Protein intake in adults of village Behkri, Chakwal, Pakistan

Danial Ejaz Maqbool^{a*}

a. Institute of Dietetics and Nutritional Science, Islamabad Campus, University of Lahore

Abstract: Optimal protein intake is essential for supporting muscle strength, mass, and general health. The differences in intake are primarily impacted by gender, age, occupation, and body composition. The low intake of proteins in Pakistan, especially in rural areas, is due to cultural and economic factors. The present study aims to assess the dietary protein intake in adults of Village Behkri, Chakwal, and evaluate it with the Recommended Dietary Allowances (RDAs). A cross-sectional study was performed among 100 adults (≥ 20 years), enrolled randomly according to set criteria. The participants provided data related to anthropometrics (height, weight, BMI), demographics (age, occupation, etc.), and 3-day dietary records. The protein intake was measured employing the Pakistan Food Composition Table (2001) and supplemented with the USDA Food Composition Database. Data were grouped and analyzed by age, gender, occupation, and BMI, comparing them with the RDA of 0.8g/kg/BW. The males' protein intake was found to be consistently more than that of females across all age groups included in the study. The highest protein intake was found in the adults aged ≥ 56 years (54 g/day), followed by those aged 20–35 years (53 g/day), while the lowest intake was in the 36–55 years' group (49 g/day). Protein intake was found to be positively linked with BMI, as underweight adults consumed 55 g/day as compared to obese adults with 45 g/day. Protein intake differed notably by age, BMI, and gender, with males overall consuming more than females. However, older and younger adults exceeded or approached their RDAs, while overweight or obese and middle-aged adults fell below the recommendations. The results call for the need for specific dietary interventions among the rural populations of Pakistan.

Keywords: Body Mass Index, Consumption Pattern, Protein Intake, Recommended Dietary Allowance, Rural Pakistan, Nutritional Assessment, Dietary Patterns, Chakwal

1. Introduction

Protein is a crucial macronutrient for maintaining body structure and function, muscle synthesis, tissue repair, metabolic regulation, and immune function (Morgan et al., 2023). The RDA for a healthy adult is typically set at 0.8g/kg/day, although some research findings suggest that appropriate and safe levels may range between 0.93 - 1.2 g/kg/day, especially when procedural limitations of past research are taken into consideration (Elango et al., 2010). The significance of meeting RDAs is highly emphasized in global-level dietary guidelines; however, the actual intake patterns differ significantly due to diversity in economic, agricultural, and cultural factors across different geographical regions (Trumbo et al., 2002). Chronic malnutrition remains a constant concern in Pakistan. Recent studies have found a huge gap between the protein requirements and consistent protein consumption, especially in rural areas, where there is limited dietary diversity and economic constraints limit its intake (Bhutta et al., 2014). One national research finding suggested that the median protein intake in a household every month (6,381 g) lies way below the recommended standards, revealing a universal scarcity in protein consumption across the whole population (Hayat et al., 2022).

Another cross-sectional study revealed that cereals and wheat make up approximately half (50%) of this total protein intake, whereas animal-based sources, which are rich in essential amino acids, barely have a share of about 6.4g/person/day (Shabnam et al., 2021). Despite existing overall national-level data. Regional/local assessments remain limited. The majority of the research studies either encompass metropolitan or diversified

[Received] 14 May 2025; Accepted 12 Dec 2025; Published (online) 18 Dec 2025]

Finesse Publishing stays neutral concerning jurisdictional claims to published maps

Attribution 4.0 International (CC BY 4.0)

Corresponding email: danialejazmaqbool197@gmail.com (Danial Ejaz Maqbool)

DOI: 10.61363/fsamr.v4i1.270

nation-wide samples, or focuses on specific groups or children, e.g., a study that involved Pakistani school-children (aged 6-16 years) through 24-hr dietary recall suggested that the protein consumption levels were qualitatively less as compare to carbohydrates intake, strengthening the earlier results of variations in macronutrient distribution (Aziz and Hosain, 2014). In older men, protein consumption also remained well below the recommended levels, and even further declined with an increase in age, which suggests many age-related susceptibilities to insufficient nutrition (Alam et al., 2011).

Adequate protein consumption is a serious challenge in rural areas that include lesser dietary diversity, low financial status, seasonal insecurity of food, etc. Despite this, literature focusing on rural populations regarding this remains scarce. The present study addresses an important evidence research gap by focusing on a rural community in Chakwal (Behkri), providing essential understanding for specifically targeted nutrition programs and large-scale rural health policies in Pakistan (Hameed et al., 2021).

2. Research Methodology

2.1. Study Design and Subject Selection

A cross-sectional study was conducted in Village Behkri, District Chakwal, Punjab, Pakistan. Adults aged ≥ 20 years of both sexes were included. Individuals younger than 20 years or unwilling to participate were excluded. Informed consent was also obtained from all participants individually before enrolling them in the study. The study protocol was approved by the Institutional Review Board of the University of Lahore – Islamabad campus.

2.2. Sampling and Data Collection

A simple random sampling technique was employed. From local health records, a list was obtained of residents in Behkri village, and using a computer-generated random number table, the participants were selected. A total sample size of 100 participants was measured with a power of 80% and a significance level of 5%. Data collection included demographic details (age, gender, occupation), anthropometric measurements (height, weight, BMI), and 3-day dietary records. The height of participants was measured using a stadiometer up to the nearest 0.1 cm, and the weight was calculated using a calibrated digital scale. BMI was calculated by dividing weight (kg) by height (m²). WHO standards were applied for defining BMI categories: underweight (<18.5), normal weight (18.5-24.9), overweight (25-29.9), and obese (≥ 30). No ethnic-specific cut-offs were applied (WHO, 2008).

2.3. Dietary Assessment

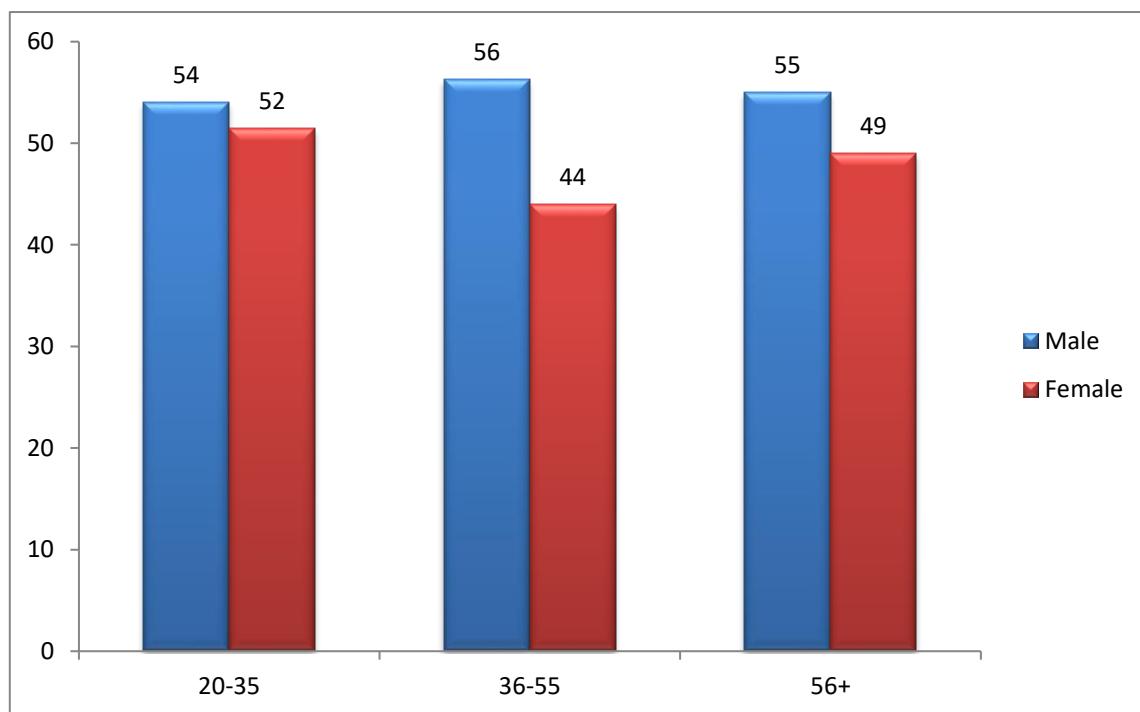
The participants were asked to note down their consumption of all beverages and foods over 3 non-consecutive days, including a weekend day. They were also guided about portion sizes and measuring tools commonly practiced/used at home. The researcher thoroughly reviewed the records for completeness and any ambiguity in them during the records submission. Dietary protein intake was estimated using the Pakistan Food Composition Table (NWFP Agriculture University, 2001) and the USDA Food Composition Database (USDA, 2024). The USDA Food Composition Table was used for any food item/s does not present in the Pakistan Food Composition Table (2001). However, limitations in regional food representation may affect the accuracy of protein estimates for traditional dishes.

2.4. Data Analysis

Data were categorized by gender, age (20-35, 36-55, ≥ 56 years), BMI categories (underweight, normal weight, overweight, obese), and occupation. Intake values were compared against RDIs (0.8 g/kg/day for adults).

3. Results and Discussion

3.1. Demographic Characteristics


The gender wise distribution showed that there were 53% females and 47% males in the study population. 39% (n=39) fell in the age group of 20-35 years, 41% individuals (n=41) in the 36-55 years age-group, and 20% (n=20) in the 56+ years age-group. 17% of participants (n=17) were students, 30% (n=30) were employed, 40% (n=40) were housewives, and 13% (n=13) were retired. 10% of participants (n=10) were underweight, 57% (n=57) were normal weight, 27% (n=27) were overweight, and only 6% of participants (n=6) were obese.

3.2. Protein Intake by Gender

Males consistently consumed more protein than females, irrespective of age categories. Like, in the age group of 36-55 years, females consumed 44g of protein per day compared to 56g by males daily. This finding is consistent with both national and international research that indicates that females mostly consume less protein

than their counterparts, males, for several reasons, including lesser energy needs and many socio-cultural factors like dietary restrictions and intra-household distribution of food, etc. (Park, 2018). Lower diet quality was observed in females in Pakistan, especially living in rural areas where there is limited dietary diversity (Shabnam et al., 2021). According to a recent study, most Pakistani households spend only 20% of their food budget on protein-containing foods, with inflation and affordability considered two important barriers (Protein Perception Study, 2023). In rural areas of Pakistan, inadequate intake of proteins is combined with different micronutrient deficiencies like iron deficiency anemia, which is greatly prevalent in women, especially during reproductive age. Studies conducted observe that about 60% of these affected females are those with low protein intake (Arshad et al., 2023). This disparity leads to higher chances of anemia, osteoporosis, and other nutritional deficiencies in rural females, especially during their youth (Shahzad et al., 2021). These results show that this gender-based difference in protein intake, especially in rural Pakistan, has a huge impact on females' health across the whole life course.

Figure 1: Protein Intake Comparison with Recommendations (Gender-Wise)

3.3. Protein Intake by Age

In the first age group (20-35 years), the average protein intake of individuals was 53g, while the average recommendation for them was 48g, meaning individuals of this age group were consuming more than their recommended amounts. Coming to the second age group (36-55 years), the average protein intake of individuals here was 49g, while their recommendation was 54g, meaning they were consuming less protein than their standard recommendations. The average protein intake of individuals of the third age-group (56+ years) was 54g compared to their recommendations of 55g, implying they were consuming approximately close to their average recommendations. This finding is consistent with research conducted by Alam et al. (2011), which also found a decrease in dietary quality among Pakistani adults, mainly because of negligence, occupational demands, and financial pressures. Also, the lower protein consumption in adult females was reported in the Korea National Health and Nutrition Examination Survey, indicating the worldwide pattern of malnutrition during this stage of life (Park, 2018). Previous research also reinforces these results. A study conducted in the USA suggested that middle-aged adults having lower protein consumption are more susceptible to having less muscle weakness and lean mass (Jun et al., 2021), suggesting that being unable to meet protein requirements can increase the risk of sarcopenia (muscle loss related to age) that begins around 40 years of age (Roubenoff, 2000).

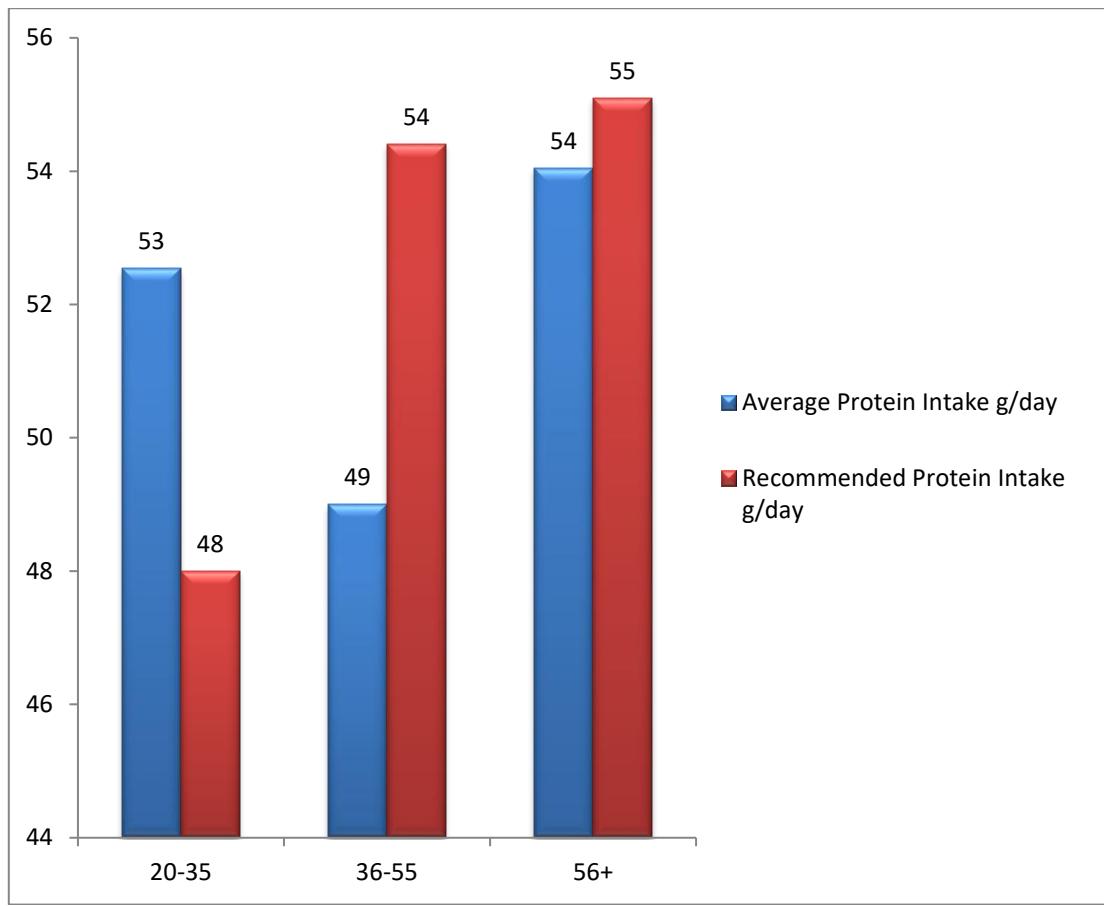
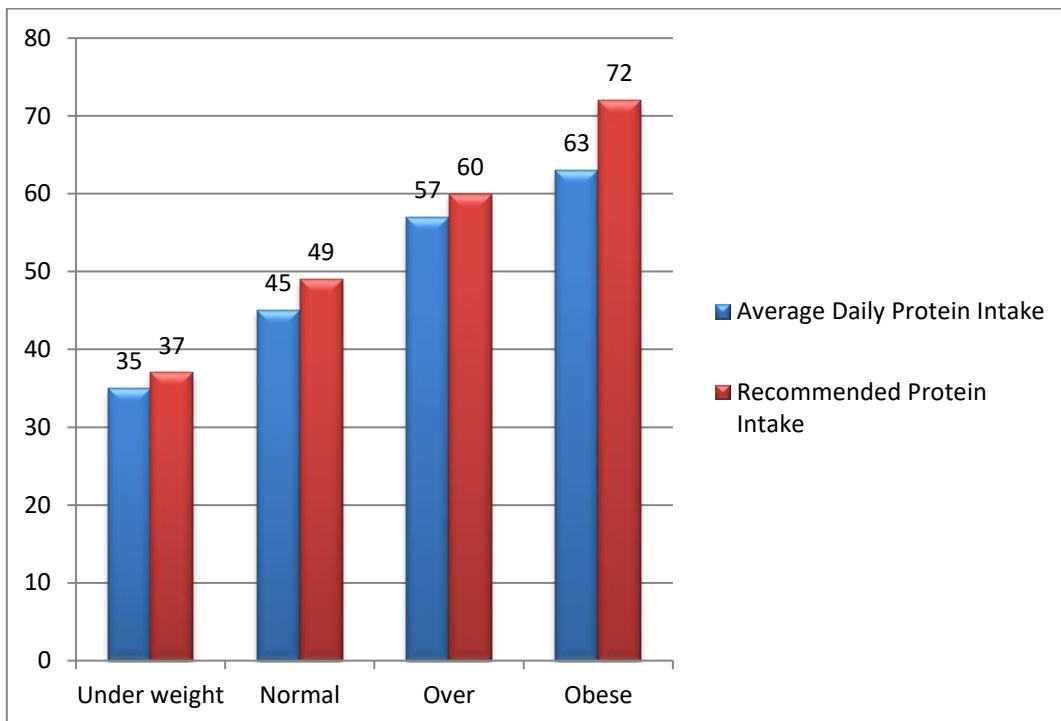


Figure 2: Protein Intake Comparison with Recommendations (Age-Wise)


3.4. Protein Intake by BMI

(Figure 3) shows that underweight individuals consume 35g of protein daily, while their average recommendation was 37g, meaning they were consuming protein close to their recommendations. Coming to normal weight individuals, their average intake was 45g, compared to recommendations of 49g, meaning they were also consuming protein just below their needs. The average protein intake of overweight individuals was 57g, compared to the average recommendations of 60g, which means their intake was slightly less than their average recommendations. Obese individuals had an average protein intake of 63g, while their recommendations were 72g, implying a low protein intake. Despite the obese individuals consuming more protein, their intake did not match the higher needs linked to their body weight. This odd match can result in sarcopenic obesity, in which muscle mass is less compared to body fat, increasing the risk of physical disability and metabolic disorders (Trichopoulou et al., 2002). South Asian populations have also shown these types of trends, where the higher BMI is not always linked to improved diet quality (Elango et al., 2010).

Several studies have supported this trend. A prospective Korean cohort study (KoGES) conducted for 12 years showed that increased protein consumption is positively linked with lean mass, especially in adults having a normal weight (Kim et al., 2019). Different meta-analyses and systematic reviews have shown that protein-rich diets ($>1.3\text{g/kg/day}$) help in preserving lean body mass, especially in obese/overweight adults, as compared to low-protein diets ($<1\text{g/kg/day}$), which result in muscle loss (Elfadil et al., 2024). RCTs in older obese adults have also proven that the combination of a protein-rich diet ($\sim 1.3\text{g/kg/day}$) and resistance exercise is highly effective in the maintenance of fat-free mass as compared to protein alone (Verreijen et al., 2017). Talking about the protein sources, Australian research showed that the intake of animal protein is positively linked to BMI, as compared to plant protein, which is negatively or inversely associated, which suggests that the quality and origin of proteins also play a very important role (Tapsell et al., 2016). Locally, research conducted among Lahore's elderly females suggested that slightly higher intake of proteins (1.2g/kg/day) improved muscle strength, mass, and composition compared to the standard consumption (Ishaq et al., 2025). Combined, these

findings suggest that despite consuming more protein overall by obese individuals, their consumption remains low compared to their high muscular and metabolic needs.

Figure 3: Protein Intake Comparison with Recommendation (BMI-Wise)

4. Conclusion

Protein consumption among individuals of the target population in this study differed across demographics. While older and younger adults consumed protein close to their recommendations, obese and middle-aged adults had inadequate consumption. Individualized nutrition interventions and education are required to improve the protein adequacy, especially within the vulnerable groups of rural Pakistan.

Authors' Contribution

Danial Ejaz Maqbool conceptualized and wrote the manuscript, drafted and revised the manuscript.

Competing Interest

The author declared no conflict of interest.

Funding

The author has not received any funding to conduct the research.

References

Alam, I., Larbi, A., Pawelec, G. Relationship between anthropometric variables and nutrient intake in apparently healthy male elderly individuals: A study from Pakistan. *Nutr J* 10, 111 (2011). <https://doi.org/10.1186/1475-2891-10-111>

Aziz, S., & Hosain, K. (2014). Carbohydrate (CHO), protein, and fat intake of healthy Pakistani school children in a 24-hour period. *JPMA. The Journal of the Pakistan Medical Association*, 64(11), 1255-1259.

Bhutta, Z. A., Lassi, Z. S., & Padhani, Z. A. (2014). Nutrition in Pakistan: Challenges for the next decade. *The Lancet Global Health*, 2(11), e620-e621.

Department of Agricultural Chemistry & Human Nutrition, NWFP Agricultural University; Planning & Development Division, Government of Pakistan. (2001). *Food Composition Table for Pakistan (Revised 2001)*. Peshawar: NWFP Agricultural University.

Elango, R., Humayun, M. A., Ball, R. O., & Pencharz, P. B. (2010). Evidence that protein requirements have been significantly underestimated. *Current opinion in clinical nutrition and metabolic care*, 13(1), 52–57. <https://doi.org/10.1097/MCO.0b013e328332f9b7>

Elfadil, O. M., Patel, A., Joly, F., Lal, S., Bozzetti, F., Cuerda, C., ... & Mundi, M. S. (2024). Patients' and caregivers' perspectives on challenges and outcomes with tube feeding: Analysis of home enteral nutrition survey data. *Clinical Nutrition ESPEN*, 61, 94-100. <https://doi.org/10.1016/j.clnesp.2024.03.005>

Hameed, A., Padda, I. U. H., & Salam, A. (2021). Analysis of Food and Nutrition Security in Pakistan: A Contribution to Zero Hunger Policies. *Sarhad Journal of Agriculture*, 37(3). <https://dx.doi.org/10.17582/journal.sja/2021/37.3.1025.1042>

Ishaq, I., Noreen, S., Maduabuchi Aja, P., & Atoki, A. V. (2025). Role of protein intake in maintaining muscle mass composition among elderly females suffering from sarcopenia. *Frontiers in Nutrition*, 12, 1547325. <https://doi.org/10.3389/fnut.2025.1547325>

WHO/FAO/UNU Expert Consultation (2008). Protein and amino acid requirements in human nutrition. World Health Organization Technical Report Series, (935).

Jun, S., Cowan, A. E., Dwyer, J. T., Campbell, W. W., Thalacker-Mercer, A. E., Gahche, J. J., & Bailey, R. L. (2021). Dietary Protein Intake Is Positively Associated with Appendicular Lean Mass and Handgrip Strength among Middle-Aged US Adults. *The Journal of Nutrition*, 151(12), 3755–3763. <https://doi.org/10.1093/jn/nxab288>

Kim, C. O., Lee, K. R., & KoGES group. (2019). Association between protein intake and lean mass loss over 12 years: Korea Genome and Epidemiology Study. *Clinical Nutrition*, 38(6), 2743–2750. <https://doi.org/10.1016/j.clnu.2018.11.034>

Morgan, P. T., Witard, O. C., Højfeldt, G., Church, D. D., & Breen, L. (2023). Dietary protein recommendations to support healthy muscle ageing in the 21st century and beyond: considerations and future directions. *Proceedings of the Nutrition Society*, 1-14. <https://doi.org/10.1017/S0029665123003750>

Park, H. A. (2018). Adequacy of protein intake among Korean elderly: An analysis of the 2013–2014 Korea National Health and Nutrition Examination Survey data. *Korean Journal of Family Medicine*, 39(2), 130. <https://doi.org/10.4082/kjfm.2018.39.2.130>

Protein Perception Study. (2023). Most Pakistanis worry about protein intake, yet spend under 20% on protein foods. *The Pakistan Affairs*. Retrieved from <https://thepakistanaffairs.com/most-pakistanis-worry-about-protein-intake-yet-spend-under-20-on-protein-foods-2023-study/>

Roubenoff R. (2000). Sarcopenia and its implications for the elderly. *European journal of clinical nutrition*, 54 Suppl 3, S40–S47. <https://doi.org/10.1038/sj.ejcn.1601024>

Shabnam, N., Ashraf, M. A., Laar, R. A., & Ashraf, R. (2021). Increased Household Income Improves Nutrient Consumption in Pakistan: A Cross-Sectional Study. *Frontiers in Nutrition*, 8, 672754. <https://doi.org/10.3389/fnut.2021.672754>

Shahzad, F., Saeed, A., & Malik, S. (2021). Status of bone health and its association with socio-demographic characteristics in Pakistani females. *Pakistan Journal of Medical Sciences*, 37(5), 1290–1295. <https://doi.org/10.12669/pjms.37.5.3126>

Tapsell, L. C., Neale, E. P., Satija, A., & Hu, F. B. (2016). Foods, nutrients, and dietary patterns: Interconnections and implications for dietary guidelines. *Advances in Nutrition*, 7(3), 445–454. <https://doi.org/10.3945/an.115.011718>

Trichopoulou, A., Gnardellis, C., Benetou, V., Lagiou, P., Bamia, C., & Trichopoulos, D. (2002). Lipid, protein, and carbohydrate intake in relation to body mass index. *European journal of clinical nutrition*, 56(1), 37–43. <https://doi.org/10.1038/sj.ejcn.1601286>

Trumbo, P., Schlicker, S., Yates, A. A., Poos, M., & Food and Nutrition Board of the Institute of Medicine, The National Academies (2002). Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein, and amino acids. *Journal of the American Dietetic Association*, 102(11), 1621–1630. [https://doi.org/10.1016/s0002-8223\(02\)90346-9](https://doi.org/10.1016/s0002-8223(02)90346-9)

U.S. Department of Agriculture, Agricultural Research Service. (2024). Food Data Central (Version current: April 2024). U.S. Department of Agriculture. <https://fdc.nal.usda.gov>

Verreijen, A. M., Engberink, M. F., Memelink, R. G., Van der Plas, S. E., Visser, M., & Weijns, P. J. (2017). Effect of a high protein diet and/or resistance exercise on the preservation of fat free mass during weight loss in overweight and obese older adults: a randomized controlled trial. *Nutrition journal*, 16(1), 10. <https://doi.org/10.1186/s12937-017-0229-6>